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Abstract

The recent trend in multiple object tracking (MOT) is
heading towards leveraging deep learning to boost the
tracking performance. However, it is not trivial to solve
the data-association problem in an end-to-end fashion. In
this paper, we propose a novel proposal-based learnable
framework, which models MOT as a proposal generation,
proposal scoring and trajectory inference paradigm on an
affinity graph. This framework is similar to the two-stage
object detector Faster RCNN, and can solve the MOT prob-
lem in a data-driven way. For proposal generation, we
propose an iterative graph clustering method to reduce the
computational cost while maintaining the quality of the
generated proposals. For proposal scoring, we deploy a
trainable graph-convolutional-network (GCN) to learn the
structural patterns of the generated proposals and rank
them according to the estimated quality scores. For trajec-
tory inference, a simple deoverlapping strategy is adopted
to generate tracking output while complying with the con-
straints that no detection can be assigned to more than
one track. We experimentally demonstrate that the pro-
posed method achieves a clear performance improvement
in both MOTA and IDF1 with respect to previous state-of-
the-art on two public benchmarks. Our code is available at
https://github.com/daipl3/LPC_MOT.git.

1. Introduction

Tracking multiple objects in videos is an important prob-
lem in many application domains. Particularly, estimating
humans location and their motion is of great interest in
surveillance, business analytics, robotics and autonomous
driving. Accurate and automated perception of their where-
abouts and interactions with others or environment can help
identifying potential illegal activities, understanding cus-
tomer interactions with retail spaces, planning the pathway
of robots or autonomous vehicles.

The ultimate goal of multiple object tracking (MOT) is
to estimate the trajectory of each individual person as one
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complete trajectory over their whole presence in the scene
without having any contamination by the others. Much re-
search is done in this domain to design and implement ro-
bust and accurate MOT algorithms in the past [7, 28, 47].
However, the problem still remains unsolved as reported
in the latest results in various public benchmarks [14, 16,
, 37]. The key challenges in MOT are mostly due to oc-
clusion and scene clutter, as in any computer vision prob-
lem. Consider the case when two people (yellow and purple
boxes in Figure 1) are walking together in a spatial neigh-
borhood. At one point, both people are visible to the camera
and recent object detection algorithms like [33, 42, 43], can
easily detect them. When the two people become aligned
along the camera axis, however, one is fully occluded by
another, and later both become visible when one passes the
other. Since the visual appearance may have subtle differ-
ence between the two targets due to various reasons like
illumination, shading, similar clothing, etc, estimating the
trajectory accurately without contamination (often called as
identity transfer) remains as the key challenge. In more
crowded scenes, such occlusion can happen across multi-
ple peoples which pose significant troubles to any MOT
algorithm. Moreover, the MOT problem naturally has an
exponentially large search space for the solution ' which
prohibits us from using complicated mechanisms.
Traditional approaches focus on solving the problem by
employing various heuristics, hand-defined mechanisms to
handle occlusions [8, 28]. Multiple Hypotheses Tracking
(MHT [28]) is one of the earliest successful algorithms for
MOT. A key strategy in MHT to handle occlusions is to
delay data-association decisions by keeping multiple hy-
potheses active until data-association ambiguities are re-
solved. Network flow-based methods [&, 9] have recently
become a standard approach for MOT due to their compu-
tational efficiency and optimality. In this framework, the
data-association problem is modeled as a graph, where each

IThe tracking-by-detection approach, which is the de-facto framework
in MOT domain, needs to solve the data-association problem given detec-
tions at each timestamp. The size of hypothesis space is exponential to the
number of detections [28].
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Figure 1. Overview of our framework. (a) Given a set of frames and detections as input. (b) A graph is constructed to model the data
association problem. Nodes in the graph represent detections/tracklets and the edges indicate possible links among nodes. The nodes
in different colors represent different objects. Similar to two-stage object detector faster RCNN, our method adopts a proposal-based
framework. Multiple proposals (i.e., candidate object trajectories) are generated based on the affinity graph. (c) We evaluate the quality
scores of the generated proposals with trainable GCN. (d) A simple de-overlapping strategy is adopted to do trajectory inference and (e)

obtain the final tracking output.

node represents a detection and each edge indicates a possi-
ble link between nodes. Then, occlusions can be handled by
connecting non-consecutive node pairs. Both MHT and net-
work flow-based methods need to manually design appro-
priate gap-spanning affinity for different scenarios. How-
ever, it is infeasible to enumerate all possible challenging
cases and to implement deterministic logic for each case.

In this paper, we propose a simple but surprisingly ef-
fective method to solve the MOT problem in a data-driven
way. Inspired by the latest advancement in object detec-
tion [43] and face clustering [57], we propose to design the
MOT algorithm using two key modules, 1) proposal gen-
eration and 2) proposal scoring with graph convolutional
network (GCN) [30]. Given a set of short tracklets (locally
grouped set of detections using simple mechanisms), our
proposal generation module (see Figure 1(b)) generates a
set of proposals that contains the complete set of tracklets
for fully covering each individual person, yet may as well
have multiple proposals with contaminated set of tracklets
(i.e., multiple different people merged into a proposal). The
next step is to identify which proposal is better than the
others by using a trainable GCN and rank them using the
learned ranking/scoring function (see Figure 1(c)). Finally,
we adopt an inference algorithm to generate tracking out-
put given the rank of each proposal (see Figure 1(d)), while
complying with the typical tracking constraints like no de-
tection assigned to more than one track.

The main contribution of the paper is in four folds: 1)

We propose a novel learnable framework which formulates
MOT as a proposal generation, proposal scoring and trajec-
tory inference pipeline. In this pipeline, we can utilize algo-
rithms off the shelf for each module. 2) We propose an it-
erative graph clustering strategy for proposal generation. It
can significantly reduce the computational cost while guar-
anteeing the quality of the generated proposals. 3) We em-
ploy a trainable GCN for proposal scoring. By directly op-
timizing the whole proposal score rather than the pairwise
matching cost, GCN can incorporate higher-order informa-
tion within the proposal to make more accurate predictions.
4) We show significantly improved state-of-the-art results
of our method on two MOTChallenge benchmarks.

2. Related Work

Most state-of-the-art MOT works follow the tracking-
by-detection paradigm which divides the MOT task into
two sub-tasks: first, obtaining frame-by-frame object de-
tections; second, linking the set of detections into trajec-
tories. The first sub-task is usually addressed with object
detectors [33, 42, 43, 56]. While the latter can be done on
a frame-by-frame basis for online applications [22, 51, 53,
60, 61] or a batch basis for offline scenarios [3, 7, 38]. For
video analysis tasks that can be done offline, batch meth-
ods are preferred since they can incorporate both past and
future frames to perform more accurate association and are
more robust to occlusions. A common approach to model
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data-association in a batch manner is using a graph, where
each node represents a detection and each edge indicates
a possible link between nodes. Then, data-association can
be converted to a graph partitioning task, i.e., finding the
best set of active edges to predict partitions of the graph
into trajectories. Specifically, batch methods differ in the
specific optimization methods used, including network flow
[41], generalized maximum multi clique [15], linear pro-
gramming [24], maximum-weight independent set [8], con-
ditional random field [55], k-shortest path [3], hyper-graph
based optimization [50], etc. However, the authors in [4]
showed that the significantly higher computational cost of
these overcomplicated optimization methods does not trans-
late to significantly higher accuracy.

As summarized in [12, 32], the research trend in MOT
has been shifting from trying to find better optimization
algorithms for the association problem to focusing on the
use of deep learning in affinity computation. Most existing
deep learning MOT methods focus on improving the affin-
ity models, since deep neural networks are able to learn
powerful visual and kinematic features for distinguishing
the tracked objects from the background and other similar
objects. Leal-Taixé et al. [31] adopted a Siamese convolu-
tional neural network (CNN) to learn appearance features
from both RGB images and optical flow maps. Amir et
al. [46] employed long short-term memory (LSTM) to en-
code long-term dependencies in the sequence of observa-
tions. Zhu et al. [61] proposed dual matching attention net-
works with both spatial and temporal attention mechanisms
to improve tracking performance especially in terms of
identity-preserving metrics. Xu et al. [53] applied spatial-
temporal relation networks to combine various cues such
as appearance, location, and topology. Recently, the au-
thors in [4, 45] confirmed the importance of learned re-
identification (RelD) features for MOT. All aforementioned
methods learn the pair-wise affinities independently from
the association process, thus a classical optimization solver
is still needed to obtain the final trajectories.

Recently, some works [7, 11, 47, 54] incorporate the op-
timization solvers into learning. Chu et al. [1 |] proposed an
end-to-end model, named FAMNet, to refine feature repre-
sentation, affinity model and multi-dimensional assignment
in a single deep network. Xu et al. [54] presented a differen-
tiable Deep Hungarian Net (DHN) to approximate the Hun-
garian matching algorithm and provide a soft approxima-
tion of the optimal prediction-to-ground-truth assignment.
Schulter et al. [47] designed a bi-level optimization frame-
work which frames the optimization of a smoothed network
flow problem as a differentiable function of the pairwise as-
sociation costs. Brasé et al. [7] modeled the non-learnable
data-association problem as a differentiable edge classifica-
tion task. In this framework, an undirected graph is adopted
to model the data-association problem. Then, feature learn-

ing is performed in the graph domain with a message pass-
ing network. Next, an edge classifier is learned to clas-
sify edges in the graph into active and non-active. Finally,
the tracking output is efficiently obtained via grouping con-
nected components in the graph. However, this pipeline
does not generally guarantee the flow conservation con-
straints [1]. The final tracking performance might be sensi-
tive to the percentage of flow conservation constraints that
are satisfied.

Similar to [7], our method also models the data-
association problem with an undirected graph. However,
our approach follows a novel proposal-based learnable
MOT framework, which is similar to the two-stage object
detector Faster RCNN [43], i.e. proposal generation, pro-
posal scoring and proposal pruning.

3. Method

Given a batch of video frames and corresponding de-
tections D = {dy,--- ,dy}, where k is the total number
of detections for all frames. Each detection is represented
by d; = (0i,pi,t;), where o; denotes the raw pixels of the
bounding box, p; contains its 2D image coordinates and ¢;
indicates its timestamp. A trajectory is defined as a set of
time-ordered detections 7; = {d;,,--- ,d;, }, where n; is
the number of detections that form trajectory i. The goal of
MOT is to assign a track ID to each detection, and form a
set of m trajectories 7. = {71, - - , T, } that best maintains
the objects’ identities.

3.1. Framework Overview

As shown in Figure 1, our framework consists of four
main stages.

Data Pre-Processing. To reduce the ambiguity and
computational complexity in proposal generation, a set of
tracklets 7 = {71, -+, T, } is generated by linking detec-
tions D in consecutive frames. And these tracklets 7 are
utilized as basic units in downstream modules.

Proposal Generation. As shown in Figure 1(b), we
adopt a graph G = (V,€), where V = {vy, - ,v,},
E C V x V, to represent the structured tracking data 7.
A proposal P; = {v;} is a subset of the graph G. The ob-
jective of proposal generation is to obtain an over-complete
set of proposals which contain at least one perfect proposal
for each target. However, it is computationally prohibitive
to explore all perfect proposals {731}:’;1 from the affinity
graph G. Inspired by [57], we propose an iterative graph
clustering strategy in this paper. By simulating the bottom-
up clustering process, it can provide a good trade-off be-
tween proposal quality and the computational cost.

Proposal Scoring. With the over-complete set of pro-
posals P = {P;}, we need to calculate their quality scores
and rank them, in order to select the subset of proposals that
best represent real tracks. Ideally, the quality score can be
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defined as a combination of precision and recall rates.

score(P;) = rec(P;) +w - prec(P;) (M
[Pi NPyl
rec(P;) = —=— )
[Pl

0, otherwise

prec(P;) = { 3)

where w is a weighting parameter controlling the contribu-
tion of precision score, P is the ground-truth set of all de-
tections with label major(P;), and major(P;) is the ma-
jority label of the proposal P;, |-| measures the number of
detections, n(P;) represents the number of labels included
in proposal P;. Intuitively, prec measures the purity, and
rec reflects how close P; is to the matched ground-truth 751
Inspired by [57], we adopt a GCN based network to learn
to estimate the proposal score given the above definition.
The precision of a proposal can be learned with a binary-
cross-entropy loss through training procedure. However, it
is much harder for a GCN to learn the recall of a proposal
without exploring the entire graph structure including the
vertices that are very far from a given proposal. We find
that the normalized track length (|P;| /C, where C is a con-
stant for normalization) is positively correlated with the re-
call of a proposal when precision is high. Thus, we approx-
imate the recall rate of a proposal with the normalized track
length and let the network to focus on accurately learning
the precision of a proposal.

Trajectory Inference: Similar to the Non-Maximum
Suppression in object detection, a trajectory inference strat-
egy is needed to generate the final tracking output 7, with
the ranked proposals. This step is to comply with the track-
ing constraints like no tracklet assigned to more than one
track. To reduce the computational cost, we adopt a simple
de-overlapping algorithm with a complexity of O(n).

3.2. Data Pre-processing

A tracklet is widely used as an intermediate input in
many previous works [13, 58]. In our framework, we also
use tracklets 7 = {71, --,7,} as basic units for graph
construction, where n is the number of tracklets and is far
less than detections k. Hence, it can significantly reduce
overall computation. First, the RelID features a; for each de-
tection d; is extracted with a CNN. Then, the overall affin-
ity of two detections or detection-to-tracklet is computed
by accumulating three elementary affinities based on their
appearance, timestamps and positions. Finally, low-level
tracklets are generated by linking detections based on their
affinities with Hungarian algorithm [39]. It is worth noting
that the purity of the generated tracklets is crucial, because
the downstream modules use them as basic units and there
is no strategy to recover from impure tracklets. Similarly
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Figure 2. Visualization of the iterative proposal generation. In each
iteration, only a small part of edges (red solid line) that meet the
gating thresholds can be active. Each cluster generated in iteration
¢ will be grouped as a vertex in iteration ¢ 4+ 1. To keep the purity
of the clusters, strict gating thresholds are set in the first few iter-
ations. As iterations increase, these thresholds will be gradually
relaxed to grow proposals.

to [23], we use a dual-threshold strategy in which a higher
threshold 60 is used to accept only associations with high
affinities, and a lower threshold 65 is to avoid associations
that have rivals with comparable affinities.

3.3. Iterative Proposal Generation

We propose an iterative clustering strategy to grow the
proposals gradually, as shown in Figure 2. It mainly con-
sists of two modules.

Affinity Graph Construction. At each iteration i, we
build an affinity graph G to model the similarity between
vertices V := {v1, - ,vn}. Let vertex v; = (a;,t;,p:),
where a; be the averaged RelD feature of a proposal,
t;=[t?, ..., t5] be the sorted timestamps of detections in the
proposal, p;=[ps,...,p5| be the corresponding 2D image
coordinates. The affinity score of an edge (v;, v;) is defined
as the average score based on temporal, spatial and appear-
ance similarities.

a;j(vi,v5) = %(s%(aiaaa‘) + s3;(ti,t;) + 57 (i, )

C))

bl = ] )

si;(tist5) = {exp(—g(t;;tj)), if g(ti?tj) >0 ©
—inf, otherwise

sfj(pi,pj) = emp(f(pgi;pj)) .

where g(+) measures the minimum time gap between two
vertices and g(t;, t;) = -1 if vertex v; has temporal overlap-
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Figure 3. Visualization of (a) feature encoding and (b) GCN-based purity classification netowrk.

ping with vertex v;, f(-) measures the Euclidean distance
between the predicted box > center of vertex v; and the
starting box center of vertex v;, oy and o, are controlling
parameters. To reduce the complexity of the graph, a sim-
ple gating strategy is adopted (see Appendix A.1 for details)
and the maximum number of edges linked to one vertex is
set to be less than K.

Cluster Proposals. The basic idea of proposal gener-
ation is to use connected components to find clusters. In
order to keep the purity of the generated clusters high in
the early iterations, we constrain the maximum size of each
cluster to be below a threshold s,,,... In this phase, the ver-
tices of a target object may be over-fragmented into several
clusters. The clusters generated in iteration ¢ are used as the
input vertices of the next iteration. And a new graph can be
built on top of these clusters, thereby producing clusters of
larger sizes. The final proposal set includes all the clusters
in each iteration, thus providing an over-complete and di-
verse set of proposals P = {P;}. The exact procedures are
detailed in Algorithm 1 and 2 in Appendix A.2.

3.4. Purity Classification Network

In this subsection, we devise the purity classification net-
work to estimate the precision scores {prec(P;)} of the
generated proposals P. Specifically, given a proposal P; =
{v;} i, with N; vertices, the GCN takes the features associ-
ated with its vertices and sub-graph affinity matrix as input
and predicts the probability of P; being pure. As shown in
Figure 3, this module consists of the following two main
parts.

Design of Feature Encoding. Both the appearance and
the spatial-temporal features are crucial cues for MOT. For
appearance features, a CNN is applied to extract feature em-
beddings a; directly from RGB data of each detection d;.
Then, we obtain v;’s corresponding appearance features a;
by taking the average value of all detection appearance fea-
tures. For spatial-temporal features, we seek to obtain a

2We apply a global constant velocity model to predict the 2D image
coordinates of the bounding box.

representation that encodes, for each pair of temporal ad-
jacent tracklets, their relative position, relative box size, as
well as distance in time. For proposal P; = {vi}f\ﬁl, its
vertices are sorted first in ascending order according to the
start timestamp of each vertex. Then, for every pair of tem-
poral adjacent tracklets v; and v;41, the ending timestamp
of v; and the starting timestamp of v;; is denoted as .,
and ¢, , respectively. And their bounding box coordinates
in these timestamps are parameterized by top left corner im-
age coordinates, width and height, i.e., (x;, y;, w;, h;) and
(Tit1, Yit1> Wit1, hit1). We compute the spatial-temporal
feature st; for vertex v; as:

2(Tiv1 — i) 2(Yir1 — Yi) JoghHL 1og Wit 4 )
w; +wit1  hi +hia hi w; T
(®)
if i > 0 else st; = (1,0,0,0,0). With appearance feature
a; and spatial-temporal feature st; at hand, we concatenate
them to form the feature encoding f; = concat(a;, st;) for
each vertex v;.

Design of GCN. As described above, we have obtained
the features associated to vertices in P; (denoted as F(P;)).
As for the affinity matrix for P; (denoted as A(7;)), a fully-
connected graph is adopted, in which we compute the affin-
ity between each pair of vertices, as shown in Figure 3 (a).
The GCN network consists of L layers and the computation
of each layer can be formulated as:

Fl+1(7)i) = O'(]D)('Pi)il . (A('PIL) + ]I) . Fl

where D(P;) = >, A;;(P;) is the diagonal degree matrix.
F;(P;) indicates the feature embeddings of the I-th layer,
W, represents the transform matrix, and o is a non-linear
activation function (ReLU in our implementation). At the
top-level feature embedding F,(P;), a max pooling is ap-
plied over all vertices in P; to provide an overall summary.
Finally, a fully-connected layer is employed to classify P;
into a pure or impure proposal. As shown in Equation 9, for
each GCN layer, it actually does three things: 1) computes
the weighted average of the features of each vertex and its
neighbors; 2) transforms the features with W;; 3) feeds

(Pi) - W) (9)
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the transformed features to a nonlinear activation function.
Through this formulation, the purity network can learn the
inner consistency of proposal P;.

3.5. Trajectory Inference

With the purity inference results, we can obtain the qual-
ity scores of all proposals with Equation 1. A simple de-
overlapping algorithm is adopted to guarantee that each
tracklet is assigned one unique track ID. First, we rank the
proposals in descending order of the quality scores. Then,
we sequentially assign track ID to vertices in the proposals
from the ranked list, and modify each proposal by removing
the vertices seen in preceding ones. The detailed algorithm
is described in Algorithm 3 in Appendix A.2.

4. Experiments

In this section, we first present an ablation study to bet-
ter understand the behavior of each module in our pipeline.
Then, we compare our methods to published methods on
the MOTChallenge benchmarks.

4.1. Experimental Setup
4.1.1 Datasets and metrics

All experiments are done on the multiple object tracking
benchmark MOTChallenge, which consists of several chal-
lenging pedestrian tracking sequences with frequent occlu-
sions and crowded scenes. We choose two separate tracking
benchmarks, namely MOT17 [37] and MOT20 [16]. These
two benchmarks consist of challenging video sequences
with varying viewing angle, size, number of objects, camera
motion, illumination and frame rate in unconstrained envi-
ronments. To ensure a fair comparison with other methods,
we use the public detections provided by MOTChallenge,
and preprocess them by first running [4]. This strategy is
widely used in published methods [7, 34].

For the performance evaluation, we use the widely ac-
cepted MOT metrics [5, 52, 44], including Multiple Object
Tracking Accuracy (MOTA), ID F1 score (IDF1), Mostly
Track targets (MT), Mostly Lost targets (ML), False Pos-
itives (FP), False Negatives (FN), ID switches (IDs), etc.
Among these metrics, MOTA and IDF]1 are the most impor-
tant ones, as they quantify two of the main aspects of MOT,
namely, object coverage and identity preservation.

4.1.2 TImplementation details

ReID Model. For the CNN network used to extract
RelD features, we employ a variant of ResNet50, named
ResNet50-IBN [36], which replaces batch norm layer with
instance-batch-norm (IBN) layer. After global average
pooling layer, a batch norm layer and a classifier layer is
added. We use triplet loss and ID loss to optimize the model

weights. For the ablation study, we use the ResNet50-
IBN model trained on two publicly available datasets: Im-
ageNet [17] and Market1501 [59]. While for the final
benchmark evaluation, we add the training sequences in
MOT17 [37] and MOT?20 [16] to finetune the ResNet50-
IBN model. Note that using training sequences in the
benchmark to finetune ReID model for the test sequences
is a common practice among MOT methods [21, 29, 49].

Parameter Setting. In affinity graph construction, the
parameter o; and o, is empirically set to 40 and 100, respec-
tively. In proposal generation, the maximum iteration num-
ber is set to I=10, the maximum neighbors for each node
is set to =3, the maximum cluster size is set to S,,q:=2,
and the cluster threshold step is set to A=0.05. In trajectory
inference, the weighting parameter w is set to 1 and C'=200.

GCN Training. We use a GCN with L=4 hidden layers
in our experiments. The GCN model is trained end-to-end
with Adam optimizer, where weight decay term is set to
1074, 5; and S5 is set to 0.9 and 0.999, respectively. The
batch size is set to 2048. We train for 100 iterations in total
with a learning rate 103, For data augmentation, we ran-
domly remove detections to simulate missed detections. For
the ablation study, the leave-one-out cross-validation strat-
egy is adopted to evaluate the GCN model.

Post Processing. We perform simple bilinear interpola-
tion along missing frames to fill gaps in our trajectories.

4.2. Ablation Study

In this subsection, we aim to evaluate the performance of
each module in our framework. We conduct all of our exper-
iments with the training sequences of the MOT17 datasets.

4.2.1 Proposal Generation

To evaluate the performance of proposal generation, we
choose the oracle purity network for proposal purity clas-
sification, i.e., determine whether the proposal P; is pure or
not by comparing it with the ground-truth data. For base-
line, we adopt the MHT algorithm [28] by removing the
N-scan prunning step. To reduce the search space, a simple
gating strategy is adopted which limits the maximum num-
ber of linkage for each vertex to be less than 20. The com-
parison results are summarized in Table 1. As expected, the
time cost of our iterative proposal generation method is far
less than that of the MHT-based method. Meanwhile, our
method can achieve comparable MOTA and IDF1 scores.
This demonstrates its ability to reduce the computational
cost while guarantee the quality of the generated proposals.

Effect of Maximum Iteration Number. There are four
parameters in proposal generation, namely I, K, 5,4, and
A. Experimental results show that the tracking performance
is insensitive to K, $;,40 and A. The detailed results are
shown in Appendix B. Intuitively, increasing the maximum
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Alg. MOTA{ IDF1+ MTt ML} FP] FN| IDs| Hzt

Ours  64.8 733 631 384 4006 113769 749 21.6
MHT 64.7 73.6 632 389 3767 114495 608 2.4

Table 1. Performance comparison with different proposal genera-
tion algorithms.
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Figure 4. Influence of the iteration number I on proposal genera-
tion performance.

iteration number I allows to generate a larger number of
proposals, and improves the possibility of the generated
proposals to contain good tracklets under long-term occlu-
sions. Hence, one would expect higher I values to yield
better performance. We test this hypothesis in Figure 4
by doing proposal generation with increasing number of I,
from 1 to 10. As expected, we see a clear upward tendency
for both MOTA and IDF1 metrics. Moreover, it can be ob-
served that the performance boost in both metrics mainly
occurs when increasing I from 1 to 2, which demonstrates
that most of the occlusions are short-term. We also observe
that the upwards tendency for both MOTA and IDF1 met-
rics stagnates around seven iterations. There is a trade-off
between performance and computational cost in choosing
the proper number of iterations. Hence, we use I = 10 in
our final configuration.

4.2.2 Purity Classification Network

Effects of the features. Our GCN-based purity classifica-
tion network receives two main streams of features for each
vertex: (i) appearance features from RelD model, and (ii)
spatial-temporal features from Equation 8. We test their
effectiveness by experimenting with combinations of the
above two groups of features. Results are summarized in
Table 2. It can be concluded that: (i) the appearance fea-
tures seems to play a more important role in identity preser-
vation, hence having higher IDF1 and MT measures, (ii)
the spatial-temporal features can reduce the the number of
FP and IDs, and (iii) combination of these two streams of
features can improve the overall performance.

Feats. MOTA? IDFI+ MTt ML, FP| FN| IDsl

Spat+Temp 63.6 694 622 381 5152 116653 819
App 640 703 634 373 6297 113865 1076
Spat+Temp+App 639 718 647 377 7176 113700 728

Table 2. Performance comparison for GCN-based purity classifi-
cation network with different features.

Training Loss MOTA1 IDF1T MTt ML| FP| FN| IDs|

71.8 647 377 7176 113700 728
646 378 7422 113878 765

BCELoss 63.9
MSELoss 63.8 71.2

Table 3. Performance comparison for GCN-based purity classifi-
cation network with different loss functions.

Alg. MOTA{ IDFIt MT+ ML| FP, FN| IDsl
Oracle 648 733 631 384 4006 113769 749
GCN 639 718 647 377 7176 113700 728
TCN 63.8 706 628 379 6510 114666 901
ALSTM 63.5 69.5 634 380 6131 115756 1045

ALSTM-FCN  63.7 69.4 621 373 4897 116354 1087

Table 4. Performance comparison with different purity classifica-
tion networks.

Effects of different loss functions. We perform an ex-
periment to study the impact of different loss functions
in model training. Table 3 lists the detailed quantita-
tive comparison results by using binary-cross-entropy loss
(BCELoss) and mean-squared-error loss (MSELoss), re-
spectively. Using BCELoss shows a gain of 0.6 IDF1 mea-
sure and a small amount of decrease of IDs. Hence, we use
BCELoss in our final configuration.

Effects of different networks. There are numerous pre-
vious works that use deep neural networks, such as Tem-
poral Convolutional Network (TCN [2]), Attention Long-
Short Term Memory (ALSTM [25]), ALSTM Fully Convo-
lutional Network (ALSTM-FCN [25]) to conduct temporal
reasoning on the sequence of observations. Table 4 presents
the results by using these neural networks. It should be no-
ticed that the oracle performance in Table 4 is obtained by
using ground-truth data for purity classification. By com-
paring GCN with Oracle, we can see that GCN obtains bet-
ter MT and ML measures, but worse MOTA and IDF1 mea-
sures than Oracle. The reason might be due to the false pos-
itives in GCN-based proposal purity classification, which
would generate a few impure trajectories and hence reduce
IDF1 measure. Moreover, the impure trajectories would
cause quite a few FPs in the post processing (as shown in
Table 4), hence reducing the MOTA measure. By compar-
ing GCN with other neural networks, it is clear that GCN
achieves better performance on most metrics, improving es-
pecially the IDF1 measure by 1.2 percentage. The perfor-
mance gain is attributed to its capability of learning higher-
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De-overlapping MOTA{ IDF1{ MTt ML} FP, FN| IDs)

Simple 639 718 647 377 7176 113700 728
Iterative Greedy  63.6 71.7 647 377 8628 113449 719

Table 5. Performance comparison with different de-overlapping
strategies.

order information in a message-passing way to measure the
purity of each proposal. It verifies that GCN is more suit-
able for solving the proposal classification problem.

4.2.3 Trajectory Inference

The iterative greedy strategy is a widely used technique
in MOT, which can be an alternative choice of inference.
Specifically, it iteratively performs the following steps: first,
estimate the quality scores of all existing proposals; second,
collect the proposal with highest quality score and assign
unique track ID to the vertices within this proposal; third,
modify the remaining proposals by removing the vertices
seen in preceding ones. Hence, the computational com-
plexity of the iterative greedy strategy is O(N?). Compared
with the iterative greedy strategy, the simple de-overlapping
algorithm only estimates the quality scores once. Therefore,
it can reduce the computational complexity to O(/N). The
comparison results are summarized in Table 5. It can be
observed that the simple de-overlapping algorithm achieves
slightly better performance in both MOTA and IDF1 met-
rics than the iterative greedy strategy. The reason might be
due to that as the number of iteration increases, the number
of nodes in each proposal decreases. Hence, the classifica-
tion accuracy of the purity network might decrease.

4.3. Benchmark Evaluation

We report the quantitative results obtained by our method
on MOT17 and MOT20 in Table 6 and Table 7 respec-
tively, and compare it to methods that are officially pub-
lished on the MOTChallenge benchmark. As shown in Ta-
ble 6 and Table 7, our method obtains state-of-the-art re-
sults, improving especially the IDF1 measure by 1.2 per-
centage points on MOT17 and 3.4 percentage points on
MOT?20. It demonstrates that our method can achieve strong
performance in identity preservation. We attribute this per-
formance increase to our proposal-based learnable frame-
work. First, our proposal generation module generates an
over-complete set of proposals, which improves its anti-
interference ability in challenging scenarios such as occlu-
sions. Second, our GCN-based purity network directly op-
timizes the whole proposal score rather than the pairwise
matching cost, which takes higher-order information into
consideration to make globally informed predictions. We
also provide more comparison results with other methods
on MOT16 [37] benchmark in Appendix C.

Method MOTA+ IDF1+ MTt ML, FP, FNJ IDs| Hzt
Ours 590  66.8 29.9 33.9 23102 206948 1122 4.8
Lif.T [21] 60.5 656 27.0 33.6 14966 206619 1189 0.5
MPNTrack [7]  58.8 617 28.8 33.5 17413 213594 1185 6.5
JBNOT [20] 526 508 19.7 35.8 31572 232659 3050 5.4
eHAF [48] 518 547 234 37.9 33212 236772 1834 0.7
NOTA [10] 513 547 17.1 354 20148 252531 2285 -
FWT[19] 513  47.6 214 352 24101 247921 2648 0.2
icc 7] 512 545 209 37.0 25937 247822 1802 1.8
GNNMatch [10] 573 563 242 334 14100 225042 1911 13
Tracktor [4] 563 55.1 21.1 353 8866 235449 1987 1.8

FAMNet [11] 52.0 48.7 19.1 33.4 14138 253616 3072 -

Table 6. Performance comparison with start-of-the art on MOT17
(top: offline methods; bottom: online methods).

Method MOTA?t IDF1{ MTt ML} FP| FN| IDs| Hzt

Ours 56.3 62,5 34.1 252 11726 213056 1562 0.7
MPNTrack [7] 57.6  59.1 38.2 22.5 16953 201384 1210 6.5
GNNMatch [40] 545 49.0 32.8 255 9522 223611 2038 0.1
UnsupTrack [26] 53.6  50.6 303 25.0 6439 231298 2178 1.3
SORT20 [6] 4277 451 16.7 26.2 27521 264694 4470 57.3

Table 7. Performance comparison with start-of-the art on MOT20.

Our method outperforms MPNTrack [7] only by a small
margin in terms of the MOTA score. It should be noticed
that MOTA measures the object coverage and overempha-
sizes detection over association [35]. We use the same set
of detections and post-processing strategy (simple bilinear
interpolation) as MPNTrack [7]. Then, achieving similar
MOTA results is in line with expectations. IDF1 is preferred
over MOTA for evaluation due to its focus on measuring as-
sociation accuracy over detection accuracy. We also provide
more qualitative results in Appendix D.

5. Conclusion

In this paper, we propose a novel proposal-based MOT
learnable framework. For proposal generation, we pro-
pose an iterative graph clustering strategy which strikes a
good trade-off between proposal quality and computational
cost. For proposal scoring, a GCN-based purity network is
deployed to capture higher-order information within each
proposal, hence improving anti-interference ability in chal-
lenge scenarios such as occlusions. We experimentally
demonstrate that our method achieves a clear performance
improvement with respect to previous state-of-the-art. For
future works, we plan to make our framework be trainable
end-to-end especially for the task of proposal generation.
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