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Abstract

Fixed input graphs are a mainstay in approaches that

utilize Graph Convolution Networks (GCNs) for knowledge

transfer. The standard paradigm is to utilize relationships

in the input graph to transfer information using GCNs from

training to testing nodes in the graph; for example, the

semi-supervised, zero-shot, and few-shot learning setups.

We propose a generalized framework for learning and im-

proving the input graph as part of the standard GCN-based

learning setup. Moreover, we use additional constraints be-

tween similar and dissimilar neighbors for each node in

the graph by applying triplet loss on the intermediate layer

output. We present results of semi-supervised learning on

Citeseer, Cora, and Pubmed benchmarking datasets, and

zero/few-shot action recognition on UCF101 and HMDB51

datasets, significantly outperforming current approaches.

We also present qualitative results visualizing the graph

connections that our approach learns to update.

1. Introduction

Graph Convolution Network (GCN) based techniques

have been used widely in transfer learning for tasks where

labeled data is limited, e.g., semi-supervised learning [24,

55] and zero-shot/few-shot learning [57, 9, 12] with zero

or few samples from test classes. These approaches rely

on an input graph that captures the relationships between

the nodes in the graph. Given this input graph, a GCN is

then used to propagate and assimilate information across the

graph’s nodes, obeying the relationships expressed in the

graph connections. The goal of this framework is to trans-

fer information from the training nodes to the test nodes.

This is a fairly generic framework which has been adapted

for a wide variety of tasks, with diverse node representa-

tions and input graphs. For example, for semi-supervised

learning [24, 55], the knowledge is transferred from train-

ing samples to test samples; and the nodes represent each

sample data point in the dataset and the input graph rep-

resents how these samples are related. Zero-shot learn-

ing [57, 9, 12] transfer knowledge from training classes to
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Figure 1: We use a GCN to update the input graph connec-

tions and show results for “Mixing Batter” class in zero-shot

action recognition. Language based models associates “bat-

ter” to “baseball” which is rectified in the updated graph.

test classes; and the nodes represent semantic embeddings

for classes (e.g., word2vec [34], sentence2vec [40]) and in-

put graphs can come from a variety of sources (e.g., Word-

Net [35], NELL [2], NEIL [6]). Few-shot learning transfer

knowledge between class or sample based nodes [12, 23].

One of the key limitations of these GCN-based tech-

niques discussed thus far is that the input graph structure,

as captured by the adjacency matrix, is fixed. By design,

the GCN-based approaches rely heavily on the input graphs,

and noisy or low-quality graphs have an outsized impact on

performance. In this work, we explore the adaptive learn-

ing of the input adjacency matrix over time, in conjunction

with the rest of the GCN training; i.e., the losses used to

train the underlying tasks (e.g., semi-supervised learning or

zero-/few-shot learning) are also used to update the struc-

ture of the input adjacency matrix. We show empirically

that our learned graph yields better results for downstream

tasks. Our proposed approach is a straightforward algo-

rithm to update the graph’s structure by learning better node

representations and using these to recompute the adjacency

matrix. Note that we do not add any new network weights

to learn. This is in stark contrast with other related graph

learning works [21, 10], which have a separate dedicated

network and special loss functions to update the adjacency

matrix. Since the learned node representations, via a GCN,

capture better correlations with respect to the downstream

task, the resulting graph tends to be better than the input

graph from an external source. One such update is illus-

trated in Figure 1, where we learn better connections for the

class “Mixing batter”. A language-based knowledge graph
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(KG) associates “batter” with the verb “batting” (shown as

‘input’), and our approach rectifies this mistake across up-

dates and results in more meaningful connections.

Operationalizing the straightforward approach described

above has two key issues. First, updating a densely or fully-

connected graph, in the absence of any other constraints, of-

ten tends to provide arbitrary updates to the structure, even-

tually leading to degenerate solutions (e.g., same weights

for all edges). Second, if the graph connections are sparse

(as is generally the case), there is no mechanism to learn

to add or drop connections in the learned graph. Simple

heuristics, such as fixed degree for each node can be a so-

lution, but they tend to be sub-optimal as different nodes

might have a different number of related nodes that they

should be connected to. In addition, each downstream task

can have domain-specific constraints on the degree of the

nodes; e.g., for zero-shot action recognition, [12] observed

that a fully-connected graph is detrimental to the perfor-

mance and empirically determine the suitable degree. To

address both the drawbacks discussed above, while obey-

ing the domain-specific constraints, we propose to utilize

a triplet loss formulation on the intermediate output nodes

– i.e., the node features after our graph learning step but

before the graph is passed to the GCN framework for the

downstream task. Our formulation selects positive and neg-

ative neighbors for each node, and uses them to add con-

straints on its degree. Degenerate solutions are avoided by

ensuring that negative neighbors are farther than the posi-

tive ones. Therefore, the graph learning step is trained using

both the downstream task losses and the triplet loss.

In summary, our contributions are a simple learning ap-

proach that can update the input graphs for the GCN-based

transfer learning framework and a triplet loss formulation

that avoids degenerate solutions and allows the flexibility

of degree-constraints. We demonstrate the effectiveness of

our approach on semi-supervised, zero-shot, and few-shot

learning setups. For semi-supervised learning, we use the

generic framework [24] built on citation network datasets,

like Cora, Citeseer, and Pubmed, with accompanying well-

defined input graphs. For zero-shot/few-shot learning, we

focus on the action recognition pipeline [12] with input KG

built from sentence2vec [40] embeddings.

2. Related Works

2.1. Graph Networks

Graph networks have been used for a large number of

applications like scene understanding [59, 62], segmenta-

tion [54], action recognition [13, 60] etc. Multiple works

on graph neural networks and graph convolutional networks

include [11, 47, 23, 8, 17, 24, 48, 64]. Spectral graph the-

ory was introduced by Hammond et al. [15] and more recent

works on spectral graph theory include those by Defferrard

et al. [7] and Kipf and Welling [24]. Some of the other work

in graph networks in the last decade include [20, 32, 67].

Semi-supervised learning Several works [18, 24, 25, 30,

43, 55] utilize a GCN-framework for semi-supervised learn-

ing. Such works often use citation networks datasets,

like Citeseer, Cora, and PubMed [49, 39], and protein-

protein interaction dataset [70] for experimentation on

semi-supervised learning. Our approach utilizes the GCN

framework proposed by Kipf and Welling [24] as our GCN

operator and the citation network datasets as our input.

Graph Learning Networks Most related to our research

are the recent works on graph learning networks for semi-

supervised learning [10, 21], which proposed a new loss

function to learn the edge weights in the graph. Instead of a

separate network which outputs the edge weights, we take

the intermediate output from the original GCN formulation

and update the adjacency matrix directly. Our technique is

more flexible, allowing for the update of node features and

edge weights, and connections when necessary. Our method

is also robust to complexity issues raised from increase in

the length of the input node feature dimensions, unlike Jiang

et al. [21]. Chen et al. [5] update the graph topology us-

ing a heuristics to prevent over-smoothing in GNNs. Kim

et al. [23] applies a graph neural network model for learn-

ing the edge weights in the input graph for few-shot learn-

ing, predicting labels based on connectivity to other labeled

nodes. In contrast, we build upon the GCN-framework for

zero/few-shot learning, where nodes in the graph represent

classes and not individual samples.

2.2. Zero/Fewshot Learning

Extensive research in the fields of zero/few-shot im-

age classification include works by [4, 16, 26, 29, 37, 44,

45, 46, 50, 53, 56, 66]. One of these zero-shot tech-

niques [57] uses a GCN on input KGs to transfer knowl-

edge from seen to unseen classes. Building on this frame-

work, [12] propose frameworks based on 3 different KGs

for zero/few-shot action recognition. Due to its flexibility,

use of different input graphs, and two downstream applica-

tions, we use the pipeline by [12] as our GCN-framework

for experiments on zero/few-shot learning. Other research

in the field of zero/few-shot action recognition include

[1, 9, 14, 19, 28, 33, 36, 61, 68, 69], where [9] also uses

a GCN-based system built on ConceptNet [52]. We will

demonstrate that our approach outperforms the state-of-the-

art approaches in this domain.

3. GCN-framework Overview

The GCN network for semi-supervised learning is a two

layer network based on the spectral GCN form, introduced

by [24] and given in equation 1.

H l+1 = g(H l, A) = σ(D−1/2AD−1/2H lW l), (1)

In this equation, g is the GCN operation which takes as in-

put H l, output of the lth layer, and A, the adjacency matrix
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Figure 2: System overview for adaptive learning of graph connections. The input graph is passed through a GCN layer and

this intermediate output is used to update the graph as well as calculate a triplet loss between the current node and the positive

and negative sets. This output is then passed through another GCN network that generates outputs specific to the task at hand.

The final output is used to calculate the task specific loss (like MSE loss for zero-shot learning).

with self connections. Here, D is the node degree matrix of

A, W l is the weight matrix of the lth layer and σ is the ac-

tivation function (e.g., ReLU) respectively. D−1/2AD−1/2

operation is called normalization of adjacency matrix from

now on. We use the GCN framework for zero-shot learning

proposed by [57]. A high-level overview is presented in the

Algorithm 1 (black lines) and further details are provided in

the supplementary.

4. Our Approach

The transfer of knowledge from training to test nodes

relies heavily on the quality of the input graph. Better in-

put inter-relationships among samples/classes lead to a bet-

ter output of the GCN-based transfer learning framework.

In the absence of an accompanying labelled graph (which

are present in citation datasets), several studies have ex-

plored different types of KGs (e.g., [9, 12]). All GCN-

based frameworks, with a few exceptions for both semi-

supervised learning and zero/few-shot learning, use a fixed

adjacency matrix throughout the GCN Network. However,

as discussed earlier, being able to learn the adjacency ma-

trix is both desirable and challenging. We first discuss our

algorithm for updating the adjacency matrix adaptively and

then present how we train this formulation.

4.1. Adaptively Updating the Adjacency Matrix

Let GCN1 be the part of the original network that gives

an intermediate output, and the rest of the original GCN

be GCN2. The output of GCN1 is used to recalculate the

adjacency matrix, where the edge weights are the cosine

similarity of the output node values of GCN1. Then, we

use the new adjacency matrix as our input to GCN2, starting

from the next epoch.

More formally, let hl−1

k be the output of the kth node

at the (l − 1)th layer. This passes through the lth convolu-

tion layer with weights W l. Then, for each node, there is a

weighted aggregation based on its neighbors, Ni, where the

edge weights are represented by cik connecting nodes i and

k. So the lth layer output of the ith node in GCN1, hl
i, is given

by equation 2, where σ is the non-linearity (e.g. ReLU).

hl
i = σ

(

∑

k∈Ni

cikh
l−1

k W l

)

, (2)

Similarly, hl
j is the output of the jth node at the lth layer.

Then, the new edge weight connecting nodes i and j is given

by the cosine similarity of hl
i and hl

j as shown in equation 3.

cij = Normalize

(

hl
i · h

l
j

‖ hl
i ‖‖ hl

j ‖

)

, (3)

Here Normalize is the adjacency matrix normalization used

by [24]. We denote the original adjacency matrix with

Ain and the updated one with Aupdated. GCN1 operates on

Ain, whereas GCN2 operates on Aupdated. If we do not keep

this constraint, an incorrect update to the adjacency matrix

would lead to worse graph during the next update resulting

in a domino effect. To aid with the optimization, we up-

date Aupdated every n epochs, so that GCN2 can adapt to the

new input graph. Finally, the graph adjacency is by taking

a weighted average with the original input graph (update

using equation 4).

Aupdated = λ ∗Aupdated + (1− λ) ∗Ain, (4)

When we have good quality input graphs (e.g., those in

semi-supervised learning benchmarks, whose connections

are based on dataset labels), we determine λ empirically.

However, in cases where the input graphs are noisy (e.g.,

those computed in [12] for action recognition), we often set

λ = 1, i.e., do not rely on input graph for GCN2. Details for

all setups are provided in Section 5.

4.2. Training using Triplet Loss

The original network described in Section 3 [57, 12, 24]

uses classification loss and MSE (mean squared error) loss

for training semi-supervised and zero-shot learning net-

works, respectively. To aid in updating the graph struc-

ture, we add a triplet loss. Therefore, the final framework is

trained with a weighted sum of the triplet loss and the task-

specific loss for increased supervision with a weight factor

β. For the triplet loss, we need positive and negative sets
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Algorithm 1 Overview of zero/few-shot learning

⊲ black text is the algorithm from [57],

⊲ blue text is our contribution.

Input: Input graph with node features
(

H feat
)

and adjacency ma-

trix
(

Ain
)

, pretrained I3D network for test video feature extraction
(

f test
)

, and extraction of the final classifier layer weights for train-

ing classes
(

W cls
)

, # of epochs per update (n)

Output: Classification probability for all test classes
(

P test
)

Networks: GCN1 and GCN2 are two GCN networks

1: procedure GCN TRAINING AND TESTING

2: A = Ain

3: H ref ← example reference node

4: P ← positive neighboring set for H ref based on Ain

5: N ← negative neighboring set for H ref based on Ain

6: while not converged do

7: H inter ← GCN1

(

H feat, Ain
)

Hout ← GCN2

(

H inter, A
)

8: H train ← Hout for training classes,

HP ← mean
(

H inter for positive neighbors in P
)

,

HN ← mean
(

H inter for negative neighbors in N
)

9: dP = ‖H ref −HP‖2, d
N = ‖H ref −HN‖2

10: Loss← (1− β)LMSE + βLtriplet

= (1− β)‖W cls−H train‖2+βmax(dP − dN + α, 0),

where α = margin, β = weighted loss parameter

11: if (epoch mod n) = 0 then

12: A
updated
ij =

H inter
i ·H inter

j

‖H inter
i

‖‖H inter
j

‖
,

A = λNormalize
(

Aupdated
)

+ (1− λ)Ain

where λ = weighted update parameter

13: Hout* ← output for optimized network,

H test ← Hout* for testing classes,

P test = f test
(

H test
)T

for each node. For semi-supervised learning, each training

node in the graph is a data sample with a class label. So we

can use the soft-triple loss [42], which requires the number

of clusters per class as a hyperparameter. We determine this

empirically on the validation set and the values are provided

in Section 5.

On the other hand, the positive and negative neighbors

for the class nodes in zero/few-shot learning for actions

need to be explicitly defined. We rely on the neighborhood

of each class in the graph to initialize these sets as follows.

For the positive set, we simply use the top-N(=2) neighbors

closest to each node in the input KG. However, as is the case

with triplet loss, defining negative set is more challenging.

If we only use the farthest neighbors, the downstream task

network, trained using MSE, already achieves good sepa-

ration between positives and negatives and the triplet loss

contribution is negligible. This implies that the triplet loss

has no effect on training and the adjacency matrix can get

arbitrary updates and lead to degenerate solutions. On the

other hand, if the negative set is too close to the positive set,

some nodes in the negative set may be constrictive and lead

to large penalty which is detrimental to adjacency matrix

updates. Therefore, we use the validation set to empirically

select the ordinal range of the negative set classes (details

in Section 6).

Finally, we take the average of the GCN1 node outputs for

the positive and negative sets to get the positive and nega-

tive vectors. Then, the triplet loss is zero when the distance

between the positive vector and the current node is smaller

than the distance between the current node and the negative

vector by a certain margin α (= 0.1). Mathematically, let

H ref be the output of the current reference node, and HP

and HN be the averaged output vectors for the nodes in the

positive and negative sets, respectively. Then, the distance

between H ref and HP (or HN ) is represented as dP and dN

(equation 5); and the triplet loss, Ltriplet is calculated using

equation 6.

dP = ‖H ref −HP ‖2, dN = ‖H ref −HN‖2, (5)

Ltriplet = max(dP − dN + α, 0), (6)

5. Experimental Setup

Datasets. We use Citeseer, Cora, and Pubmed

datasets [49, 39] for experiments on semi-supervised

learning, where nodes are documents and edges are cita-

tions. There are 6 classes in Citeseer, 7 in Cora, and 3

in Pubmed. We use the same train, test, and validation

splits as [24, 63]. For zero/few-shot action recognition,

we use Kinetics [22] for pre-training our feature extraction

model and as ‘additional nodes’ in the constructed graph

(refer to [12] for details). We use UCF101 [51] and

HMDB51 [27] as our evaluation datasets. Kinetics has 400

classes; UCF101 has 101 classes, out of which 23 are used

for test and 78 for training; and HMDB51 has 51 classes,

out of which 12 are used for test and 39 for training. These

dataset splits are the same as the ones used by [12]. We

make 10 random subsets of c classes among test classes and

we average the performance on all 10 subsets for validation

purposes. We then select the model with best performance

on this validation set and report results on the entire test set.

c is 20 for UCF101 dataset and 10 for HMDB51 dataset.

More details about the datasets are in the supplementary.

Input graphs. Next we discuss the input graphs which we

study in this work. For semi-supervised learning, we use the

same graphs as used by [24], based on the Citeseer, Cora,

and Pubmed datasets as discussed before. For zero/few-shot

action recognition, we use the input KGs as used by [12].

We summarize these KGs below (and refer the reader to [9,

57] for discussion on other types of KGs for these tasks).

We use the action-KG (or KG1 from [12]) for zero-

shot learning; referred to as A-KG throughout this work.

A-KG nodes use sentence2vec [40] representations of action

phrases, and the edge weight in the adjacency matrix is the
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Table 1: We compare accuracy of our technique to vari-

ous state-of-the-art techniques for semi-supervised learn-

ing using Cora, Citeseer, and Pubmed datasets (Higher is

better). We provide our GCN baseline implementation in

PyTorch (GCN*). The † in Pubmed for GLNN stands for

downsampled input data. We get the best performance for

both Citeseer and Pubmed datasets. For Cora, our abso-

lute performance is worse compared to GLCN, but relative

performance improvement from graph learning compared

to respective GCN baselines is better.

Method Cora Citeseer Pubmed

SemiEmb [58] 59.0% 59.6% 71.7%

DeepWalk [41] 67.2% 43.2% 65.3%

ICA [31] 75.1% 69.1% 73.9%

Planetoid [63] 75.7% 64.7% 77.2%

Chebyshev [7] 81.2% 69.8% 74.4%

GCN [24] 81.5% 70.3% 79.0%

MoNet [38] 81.7% — 78.8%

GAT [55] 83.0% 72.5% 79.0%

GLNN [10] 83.4% 72.4% 76.7%†

GCN+GDC [25] 83.6% 73.4% 78.7%

H-GCN [18] 84.5% 72.8% 79.8%

GLCN [21] 85.5% 72.0% 78.3%

GCN* 80.0% 72.0% 77.8%

Ours 83.6% 74.3% 79.8%

cosine similarity between the corresponding node features.

For few-shot learning, we use the visual feature-based KG

(or KG3 from [12]); referred to as V-KG throughout. These

visual features are extracted using an I3D [3] network for

five random samples per class, and these features are aver-

aged to generate node features for V-KG. Similar to A-KG,

the edge weights are based on cosine similarity of node fea-

tures. Finally, we also show results using a KG based on

verbs and nouns (or KG2 from [12]), referred to as VN-KG.

Both verbs and nouns are extracted from the action phrases,

and their sentence2vec are used as the node features for two

separate KGs. Edge connections are again based on cosine

similarity of node features. Following [12], we also show

results for combinations of these KGs under different set-

tings and demonstrate that our approach can generalize to

different input graph formulations.

Pipeline. For semi-supervised learning, we use a two-

layer network where the intermediate output is used to up-

date the graph connections. The learning rate is 0.005 for

all three datasets. We empirically determined the number of

cluster per class for soft-triple loss to be 2 for Pubmed and

Cora and 10 for Citeseer. The rest of the hyperparameters

for Soft-triple loss are the same as [42]. The λ parameter in

equation 4 is 0.8 for all datasets.

For zero/few-shot action recognition, we use I3D [3]

pre-trained on Kinetics and only finetune the last classifier

layer on the downstream datasets (separately on UCF101

Table 2: Ablation comparing accuracy for Pubmed valida-

tion data for different values of weighted averaging between

input and updated adjacency matrix, i.e., λ from equation 4.

λ 1.0 0.8 0.6 0.4 0.2

Pubmed 76.2% 80.6% 79.8% 79.4% 79.0%

Table 3: Comparison of our results with Ghosh et al. [12]

for UCF101 and HMDB51 datasets. We do better for all

input KG configurations: A-KG, V-KG, and A-KG +VN-KG

+V-KG. The metric is mean accuracy (Higher is better).

Input KG UCF101 HMDB51

[12] Ours [12] Ours

A-KG 49.14 53.27 38.01 41.05

V-KG 57.04 60.57 45.07 48.07

{A+VN+V}-KG 64.24 65.49 47.69 49.17

and HMDB51) until convergence. We use one layer for

GCN1 and five layers for GCN2, where the last layer is for

the fusion GCN for setups using multiple KGs. The learn-

ing rate is 0.001 for all experiments except few-shot learn-

ing for UCF101 where the learning rate is 0.00005. To

calculate MSE loss, we use a weighted summation of the

loss based on the specific dataset nodes (HMDB51 and

UCF101) and Kinetics nodes. λ from equation 4 is 1.0

for all zero-shot/few-shot KGs except for HMDB51 A-KG

+V-KG +VN-KG where it is 0.5 (determined empirically).

For HMDB51 A-KG, we use the final output of GCN2 to

calculate Aupdated (as opposed to GCN1) and no triplet loss.

More details on pipelines are in supplementary.

6. Quantitative Results

6.1. Semisupervised Learning

We show results on semi-supervised learning for Cora,

Citeseer, and Pubmed datasets in Table 1. We compare

against multiple state-of-the-art methods, including graph

learning methods like GLCN [21] and GLNN [10]. The

GCN* is our implementation of GCN [24] in PyTorch envi-

ronment with 256 intermediate channels and we get slightly

differing baseline results. Since our approach builds on this

baseline, we report these results as well, to do a direct com-

parison. Our approach outperforms all others on both Cite-

seer and Pubmed datasets. GLCN does best on the Cora

dataset, but their result from GCN baseline is 82.9% and

after graph learning their result is 85.5%, so relative per-

formance gain is 2.6%. Our baseline GCN result is 80.0%
and after graph learning our result is 83.6%, which implies

a 3.6% relative gain.

Ablation analysis. We report results using different values

of λ from equation 4 on Pubmed validation set in Table 2.

We observe that λ = 0.8 achieves best performance and use

this in all semi-supervised experiments. Additional experi-

ments and results are provided in the supplementary.
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Table 4: Improvements using triplet loss or updating adja-

cency matrix (on UCF101 V-KG) one at a time and then

both together. Metric is mean accuracy (Higher is better).

KG (UCF101) triplet loss update A mean accuracy

V-KG 57.04

V-KG ! 58.57

V-KG ! 59.39

V-KG ! ! 60.57

Table 5: Ablation showing performance of UCF101 A-KG

with varying number of epochs per update of adjacency ma-

trix. The metric used in mean accuracy (Higher is better).

# epoch per update 10 20 30 40 50

UCF101 A-KG 52.89 50.17 54.41 50.72 48.71

Table 6: Ablation showing performance of UCF101 A-KG

with different negative set class index ranges for triplet loss.

The metric used in mean accuracy (Higher is better).

Triplet loss ‘-’ive set 5-10 15-20 9-11 9-14 9-19

UCF101 A-KG 49.22 48.74 51.51 54.41 49.27

6.2. Zeroshot/Fewshot Action Recognition

We compare with the results of [12] for zero and few-

shot action recognition in Table 3. These results are for both

UCF101 and HMDB51, using three different input graph

configurations: A-KG, V-KG, and A-KG +VN-KG +V-KG.

For both UCF101 and HMDB51, the metric is mean accu-

racy, which averages the classwise accuracy over all classes.

It can be observed that our approach of updating the graph

structure during training significantly outperform [12].

Ablation analysis. We first analyze the contribution of our

approach to update adjacency matrix A and the triplet loss

formulation in Table 4 (on UCF101 using V-KG). We show

that both contributions are effective individually and are

complementary to each other. Next, we study the two hy-

perparameters associated with our proposals – (a) varying

the number of epochs before updating A (n), and (b) dif-

ferent ordinal ranges for negative classes for the triplet loss.

The results are presented in Table 5 and Table 6 respectively.

For these, we use the mean of 10 runs of randomly chosen

subsets of 20 test classes. We get the best performance at

30 epochs per update and negative set range of [9, 14].
Comparison with State-of-the-art Zero-shot Learning.

Finally, we compare against state-of-the-art approaches for

zero-shot learning. Note that we cannot do a similar com-

parison for few-shot learning because we do not follow

the episodic learning pipeline as the other papers. In par-

ticular, we compare against ESZSL [46], DEM [66], TS-

GCN [9], GLCN [21], [12], [33], UR [69], Action2vec [14],

and TARN [1]. Please refer to the supplementary for more

details on these approaches. We evaluate on both UCF101

Table 7: Comparison with the state-of-the-art zero-shot ac-

tion recognition results for both UCF101 and HMDB51

datasets. Metric used is mean accuracy (Higher is better).

* implies our implementation of their algorithm. In (a)

we compare over the entire test set. In (b) we randomly

choose 20 classes from UCF101 test set 10 times and aver-

age the output to replicate the 20/81 split reported by previ-

ous works ( [14, 1, 33, 69]).

Method UCF101 HMDB51

23-78 split 12-39 split

[46] 35.27 34.16

[66] 34.26 35.26

[9] 44.5 -

[21] 49.96* 37.06*

[12] 50.13 40.77

Ours 53.27 41.05

(a)

Method UCF101

20-81 split

[14] 36.5

[1] 42.7

[33] 51.2

[69] 53.8

Ours 54.4

(b)

and HMDB51 datasets and report mean accuracy. We pro-

vide results for the entire test sets, for both UCF101 and

HMDB51, in Table 7a and on the 20/81 split used by previ-

ous papers in Table 7b. For the latter, we randomly choose

20 classes from UCF101 test classes 10 times and average

the output performance and report the average scores over

all runs. We outperform the state-of-the-art techniques in all

three cases, further emphasizing the importance of updating

the graph structure for zero-shot approaches.

7. Discussion

Class-wise performance. In Figure 3, we show class-wise

performance comparison between our approach and [12] for

UCF101 test classes with A-KG and V-KG as input. For

zero-shot learning using A-KG, our technique outperforms

the baseline for most classes (12 out of 23) like “Apply

eye makeup”, “Apply lipstick”, “Billiards”, “Nunchucks”

and “Playing Daf”. In some cases (7 out of 23), like

“Still rings”, “table tennis shot”, “uneven bars”, our updated

graph performs worse. An explanation for the “Still rings”

class is discussed later (in Figure 5). For few-shot learning

using V-KG, we perform better on 12 and worse on 6, and

similar to fixed input graphs on 5 classes.

Qualitative results for graph updates. Figure 4 shows the

graph connections among 57 selected nodes for UCF101

and Kinetics based on A-KG. These nodes are the neigh-

bors for the selected 8 test classes (class names shown in

red). The edge weights are represented by the edge colors

from the color bar. In this color bar, blue represents low-

est edge weights and red represents the highest with green

and yellow somewhere in the middle. The visualization on

the left is for the input adjacency matrix, the center is after

the first update at 30th epoch, and the right is after the sec-

ond update at 60th epoch. There are many examples where

the update improves the input KG, but due to space con-

straints, we only discuss one specific node here (for more
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Figure 3: Class-wise comparison of accuracy for 23 UCF101 test classes using A-KG and V-KG as input for zero-shot and

few-shot learning, respectively, between our approach (blue) and baseline [12] (green). In both cases, for majority of classes,

we either beat or maintain the baseline performance. Best viewed in digital.

Figure 4: We plot the adjacency matrix connections for UCF101+Kinetics A-KG input and show the following two updates

of the adjacency matrix. We plot only a sub-graph due to space limitations. We chose 8 test classes (class names shown

in red) and display all their connections in the KG. The edge colors show the weight of the connection. There are multiple

regions where we can see improvements after first and second update. Best viewed in digital.

examples, please refer to the supplementary). For “Pommel

horse” (a gymnast action), we see multiple wrong connec-

tions in the input KG because this KG is based on word

embeddings. Due to the presence of the term “horse” in the

name, it associates “Pommel horse” with “Grooming horse”

and “Horse riding”. After the first update, these connec-

tions are removed, but it creates connections to classes like

“Archery” and “Fencing” which are not correct. It has some

correct connections, like ones to “Vault”,“Uneven bars”; but

the weights are low due to normalization of various con-

nections. After the second update, a lot of these connec-

tions (like “Archery”) are removed and weight increases to

connections like “Floor Gymnastics” and “Pole Vault”. So,

overall the KG improves after each update.
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Figure 5: We show the connections of AL where A is the

adjacency matrix and L is the number of layers in the GCN

(linear connectivity). We also show connections after pass-

ing through the non-linear GCN network (GCN-based con-

nectivity) for “Mixing Batter” and “Still Rings” classes. For

both, we show the top-K connections using fixed input A as

well as updated A. The edge color (based on the color bar)

and the width of the connections represent edge weights.

(larger width ∝ higher weights). For “Mixing Batter” the

performance becomes better while for ‘Still Rings” the per-

formance becomes worse after A is updated.

Visualizing important connections. Figure 5 shows im-

portant graph connections with respect to the GCN network.

A GCN has multiple layers and each layer involves convo-

lution, adjacency matrix multiplication, and non-linearity.

The linear equivalent of this system is AL where L is the

number of layers in the GCN and A is the adjacency matrix.

We display the top-N neighbors in AL with A from input

and updated adjacency matrix for two test classes: “Mixing

batter” and “Still Rings” in Figure 5 labeled as linear con-

nectivity. We also visualize the closest neighbors after the

GCN operation when our method has updated the adjacency

matrix. We propose a new visualization technique, inspired

by [65] which blocks out portions of input images to under-

stand ConvNets. If the GCN operation is represented by G

and the input to the GCN is the KG K, the original output

probability is given by O = G(K) × fvid, where fvid is the

feature vector of a video in class C. Next, we modify K to

K − ni by removing connections to one input node ni and

the new output is given by Onew = G(K−ni)×fvid. Then,

the importance of connection between node ni and the cor-

rect output class node C is given by equation 7, where the

higher the change, the more important is the connection.

|O −Onew| = | (G(K)−G(K − ni))× fvid|, (7)

We show GCN based connectivity, extracted using this ap-

proach, in Figure 5 for the two classes, “Mixing batter”

and “Still Rings”, using input and updated adjacency ma-

trix. The edge color and widths represent importance or

weight of the connection (higher width implies higher edge

weight). The updated adjacency matrix based connectiv-

ity becomes better for “Mixing batter” and worse for “Still

rings”. For “Mixing batter” the word embedding based KG

associates “batter” with “baseball” classes like “Throwing

Ball”, “Baseball Pitch”, etc. whereas our updated KG cor-

rectly associates “Mixing batter” with cooking classes like

“Cooking Egg” and ”Making a cake”. On the other hand for

“Still rings” the original KG has “Pole Vault” and “Gym-

nastics tumbling” as some of the top neighbors whereas the

updated KG has “Balance beam”, “Uneven bars”, and “Par-

allel bars” as the top neighbors. The problem is that these

are more similar to the “Pommel horse” test class and so

most “Still rings” videos are predicted as “Pommel horse”

after the update. One possible solution to this problem in the

few shot scenario is selective updates to the adjacency ma-

trix where neighbors of only those nodes are updated which

results in better performance.

8. Conclusion

We propose an approach to update adjacency matrices

in GCN-based formulation adaptively using a triplet loss

that can obey degree constrains in the graph. We analyze

and qualitatively demonstrate how the graph connections

change with updates. Inspired by prior work on ConvNets,

we visualize importance of individual connections after the

GCN operation as well as at the input. We outperform

most state-of-the-art techniques on multiple benchmarking

datasets for semi-supervised learning and zero/few-shot ac-

tion recognition by a significant margin.
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