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Abstract

For learned image compression, the autoregressive con-

text model is proved effective in improving the rate-

distortion (RD) performance. Because it helps remove spa-

tial redundancies among latent representations. However,

the decoding process must be done in a strict scan order,

which breaks the parallelization. We propose a paralleliz-

able checkerboard context model (CCM) to solve the prob-

lem. Our two-pass checkerboard context calculation elimi-

nates such limitations on spatial locations by re-organizing

the decoding order. Speeding up the decoding process more

than 40 times in our experiments, it achieves significantly

improved computational efficiency with almost the same

rate-distortion performance. To the best of our knowledge,

this is the first exploration on parallelization-friendly spa-

tial context model for learned image compression.

1. Introduction

Image compression is a vital and long-standing research

topic in multimedia signal processing. Various algorithms

are designed to reduce spatial, visual, and statistical redun-

dancies to produce more compact image representations.

Common image compression algorithms like JPEG [15],

JPEG2000 [30] and BPG [8] all follow a general pipeline,

where lossless entropy coders [23] are used after image

transformations and quantization. In those non-learned im-

age compression methods, content loss only occurs in the

quantization process. The transformations involved mainly

include Discrete Cosine Transformation and Wavelet Trans-

formation, which are lossless.

In recent years, many state-of-the-art (SOTA) deep learn-

ing and computer vision techniques have been introduced to

build powerful learned image compression methods. Many

studies aim to establish novel image compression pipelines

based on recurrent neural networks [35], convolutional au-

toencoders [5, 34, 31, 3, 6], or generative adversarial net-

works [1]. Some of them [26, 18, 11] have attained a better
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Figure 1. Masked convolutions modeling spatial causal context.

The red blocks denote elements to en/de-code. Latents in yellow

and blue locations are currently visible (all of them are visible dur-

ing encoding, and those who have been decoded are visible during

decoding). A context modeling can be conducted using a masked

convolution which is centered at the red location and only con-

volves with the yellow latents. (a)(b) 3× 3 and 5× 5 instances of

the widely used serial context model. This context model requires

strict Z-ordered serial decoding, which limits the computational

efficiency. (c)(d) Our proposed checkerboard context model with

a kernel size of 3×3 and 5×5. After decoding all anchors, which

are latents in blue and yellow locations, the context calculating for

all non-anchors can be run in parallel.

performance than those currently SOTA conventional com-

pression techniques such as JPEG2000 [30] and BPG [8] on

both the peak signal-to-noise ratio (PSNR) and multi-scale

structural similarity (MS-SSIM) [36] distortion metrics. Of

particular note is, even the intra coding of Versatile Video

Coding (VVC) [9], an upcoming video coding standard, has

been approached by a recent learning-based method [10].

The common key of those currently most successful ap-

proaches is the entropy modeling and optimizing method,

with autoencoder based structure to perform a nonlinear

transform coding [14, 5]. By estimating the probability dis-

tribution of latent representations, such models can mini-

mize the entropy of these representations to be compressed,

which directly correlates to the final code length using

arithmetic encoding [32] or range encoding [24], and en-

able a differentiable form of rate-distortion (RD) optimiza-

tion. Another important aspect is the introduction of hyper-

prior [6]. Hyper latent is the further extracted representa-

tion, which provides side-information implicitly describing

the spatial correlations in latent. Adopting hyperprior mod-

eling allows entropy models to approximate latent distribu-

tions more precisely and benefits the overall coding perfor-
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mance. This method [6] is referred to as a scale hyperprior

framework in their later work [26], where hyper latent is

used to predict the entropy model’s scale parameter.

The context model [26, 18], inspired by the concept of

context from traditional codecs, is used to predict the prob-

ability of unknown codes based on latents that have already

been decoded (as shown in Figure 1(a-b)). This method is

referred to as a mean-scale hyperprior framework [26, 16],

where hyper latent and context are used jointly to predict

both the location (i.e. mean value) and scale parameter of

the entropy model. Evaluated by previous works [26, 18],

combining all the above-mentioned components (differen-

tiable entropy modeling, hyper latent, and context model)

can beat BPG in terms of PSNR and MS-SSIM. These

context models are extended to more powerful and, of

course, more computation-consuming ones by a series of

later works [38, 19, 11, 10].

Though it seems promising, there are still many prob-

lems to solve before those models can be used in practice.

The above-mentioned context model, which plays a crucial

role in achieving SOTA performance and is adopted by most

recent works, has a horribly low computational efficiency

because of the lack of parallelization [26, 16]. Recent works

focusing on the real-world deployment of practical neural

image compression choose to omit the context model due

to its inefficiency. They choose to use only the scale hy-

perprior framework [4] or the mean-scale hyperprior frame-

work but without the context model [16]. Li et al. introduce

CCN [21] for a faster context calculation with moderate par-

allelizability but its efficiency is still limited by image size.

In order to develop a practical and more effective learning-

based image codec, it is essential to investigate more effi-

cient context models.

In this paper, we propose a novel parallelizable checker-

board context model along with a two-pass decoding

method to achieve a better balance between RD perfor-

mance and running efficiency.

2. Related Work

The most related works, including [5, 6, 26], which es-

tablish a powerful convolutional autoencoder framework for

learned image compression, have been introduced in the in-

troduction part.

A very recent work [27] proposes a channel-wise autore-

gressive entropy model that aims to minimize the element-

level serial processing in the context model of [26] and

achieves SOTA RD performance when combined with la-

tent residual prediction and round-based training. Our

checkerboard context is built in the spatial dimension,

which provides a new solution to the serial processing prob-

lem.

There are also related works aiming to improve differ-

ent aspects of the convolutional autoencoder framework, in-

(a) autoencoder with hyperprior (b) extend (a) with a context model

Figure 2. Operational diagrams: (a) Autoencoder with hyperprior.

Arrows show the data flow direction. Boxes are transforms imple-

mented by neural networks. Boxes labeled U |Q is the quantization

module, which performs uniform perturbation in the training stage

and quantization in the inference stage. (b) Autoencoder with both

hyperprior and context model.

cluding using more complex entropy models [25, 28, 20,

10], enhancing reconstruction quality with post-processing

networks [39], enabling variable rate compression using

a single model [11, 13], using content aware compres-

sion [22], and incorporating multi-scale or attention-based

neural architectures and fancier quantization methods [25,

40, 37].

3. Preliminary

3.1. Variational Image Compression with Hyper­
prior

The diagram for the scale hyperprior framework [6] is

given in Figure 2(a). ga, gs, ha, hs are nonlinear transforms

implemented by neural networks. x is the original image,

y = ga(x) and ŷ = Q(y) are latent representations before

and after quantization, x̂ = gs(ŷ) is the reconstructed im-

age. z = ha(y) and ẑ = Q(z) are the hyper latent before

and after quantization. ẑ is used as side information to esti-

mate the scale parameter σ for the entropy model of latent

ŷ. During training, the quantization operation is approx-

imated by adding uniform noise, producing differentiable

variables ỹ, z̃ and x̃. Hereinafter we always use x̂, ŷ and

ẑ to represent x̃|x̂, ỹ|ŷ and z̃|ẑ for simplicity. The trade-

off between rate and distortion or the loss function can be

written as:

R+ λ ·D = Ex∼px
[− log2 pŷ|ẑ(ŷ|ẑ)− log2 pẑ(ẑ)]

+ λ · Ex∼px
[d(x, x̂)]

(1)

where bit rate of latent ŷ and hyper latent ẑ is approximated

by estimated entropy, λ controls the bit rate(i.e. larger λ for

larger rate and better reconstruction quality), d(x, x̂) is the

distortion term, usually using MSE or MS-SSIM.

With scale hyperprior [6], the probability of latents ŷ can

be modeled by a conditional Gaussian scale mixture (GSM)

model:

pŷ|ẑ(ŷi|ẑ) =

[

N (µi, σ
2
i ) ∗ U(−

1

2
,
1

2
)

]

(ŷi) (2)
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pŷ|ẑ(ŷ|ẑ) =
∏

i

pŷ|ẑ(ŷi|ẑ) (3)

where the location parameter µi is assumed to be zero and

the scale parameter σi is the i-th element of σ = hs(ẑ) for

each code in ŷ given the hyperprior. The probability of the

hyper latent ẑ can be modeled using a non-parametric fully

factorized density model [6].

3.2. Autoregressive Context

In the mean-scale hyperprior framework [26], an addi-

tional module called context model is added to boost the RD

performance. Figure 2(b) shows the entire structure con-

sisting of autoencoder (ga, gs), hyper autoencoder (ha, hs),

context model (gcm), and a parameter inference network

(gep) which estimates the location and scale parameters

Φ = (µ,σ) of the entropy model for latent ŷ. Let hs(ẑ)
denote the hyperprior feature and gcm(ŷ<i) denote the con-

text feature, the parameter prediction for i-th representation

ŷi is

Φi = (µi, σi) = gep
(

hs(ẑ), gcm(ŷ<i)
)

(4)

where ŷ<i means the causal context (i.e. some nearby visi-

ble latents of latent ŷi). This type of context model can be

implemented using masked convolutions. Given the k × k

binary mask M and convolutional weights W , the masked

convolution with kernel size of k × k on input x can be

performed in a reparameterization form:

gcm(x) = (M ⊙W )x+ b (5)

where ⊙ is the Hadamard operator and b is a bias term.

Since M describes the context modeling pattern, by manu-

ally set different mask M various context referring schemes

are obtained. In previous works, usually the mask shown in

Figure 1(a) is adopted as M to implement a left-top ref-

erence which requires strict Z-ordered serial decoding be-

cause only already decoded latents are visible.

In [10], the entropy model is improved by using a dis-

cretized K-component Gaussian mixture model (GMM):

pŷ|ẑ(ŷi|ẑ) =
∑

0<k<K

π
(k)
i

[

N (µ
(k)
i , σ

2(k)
i ) ∗ U(−

1

2
,
1

2
)

]

(ŷi)

(6)

where K groups of entropy parameters (π(k),µ(k),σ(k))
are calculated by gep. Combined with the autogressive con-

text model, [10] is the first to achieve comparable PSNR

with VVC.

Following previous works [26, 10], we do not apply con-

text model to the hyper latent ẑ.

4. Parallel Context Modeling

Though the previous context model, called serial con-

text model by us and shown in Figure 1(a), has a limita-

Context 

Model

ෝ𝒚

𝒈𝒄𝒎(ෝ𝒚;𝑴,𝑾)
? ···

𝑴 sampling space

masks to evaluate

Figure 3. Context model in proposed random-mask model. Mask

M is randomly generated during training (orange dashed box) and

replaced by a fixed mask (blue dashed line) during evaluation.

tion on computational efficiency, most of the SOTA meth-

ods still rely on it [26, 10, 20]. Therefore, improvement is

highly required. We firstly analyze the context model us-

ing a random-mask model, then we propose a novel parallel

context model with checkerboard shaped masked convolu-

tion as a replacement to the existing serial context model.

4.1. Random­Mask Model: Test Arbitrary Masks

The context model can be seen as a convolution with

weight W conditioned on the binary mask M , as described

in eq. 5 where the mask describes the pattern of context

modeling. To understand the mechanism of context models

and explore better modeling patterns, we propose a random-

mask toy model to which arbitrary mask can be fed as the

context modeling pattern.

The random-mask model is adapted from the above-

mentioned autoregressive model [26] with the same en/de-

coders and gep. The serial context model with a manually

designed mask is replaced by a convolution conditioned on

randomly generated masks during training. As shown in

Figure 3, we generate random sampled 5× 5 masks M and

compute Hadamard product of M and non-masked convo-

lution weights W to obtain the masked convolution weights

M ⊙W in every iteration of the training stage. After each

time of backward propagation, the weights W will be up-

dated guided by a random mask M , which implicitly es-

tablishes a supernet consisting of all context models condi-

tioned on 5×5 masks. Therefore, weights are shared among

context models using different masks so that the trained

random-mask model can be used to evaluate arbitrary masks

during inference. After training, to test the performance of

a particular mask pattern, we simply feed that mask to the

context model as M , and then the random-mask model has

a context model with a fixed mask.

This random-mask model is suitable to measure the abil-

ity to save bit rate brought by various context modeling pat-

terns. The same latent ŷ and reconstructed image x̂ are

shared (because of the weight sharing) so that the same dis-

tortion is shared among context modeling patterns, enabling

the direct comparison of bit rates. Let R0 denote the non-

reference bits per pixel (BPP) when context modeling is

disabled by inputting a full-zero mask to the random-mask
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model (corresponds to the context-free mean-scale hyper-

prior baseline [26]). We further quantitate the ability of rate

saving as a rate saving ratio:

η(M) =
R0 −RM

R0
× 100% (7)

where RM denotes the BPP feeding mask M to the

random-mask model. In the following section, we use the

trained random-mask model to analyze context modeling

patterns represented by masks M by calculating their rate

saving ratio η(M).

4.2. How Distance Influences Rate Saving

The serial context model saves rate by referring to al-

ready decoded neighboring latents to estimate the entropy

of current decoding latent more precisely. For such a model

with a 5 × 5 mask (Figure 1(b)), latents on 12 locations

at the left-top of the central location are referred to in the

estimation. We find that latents on nearer locations con-

tribute to rate saving much more significantly by calculating

the η of 24 different single-reference masks (each mask has

only one location set to 1 and others set to 0, as shown in

Figure 4(b)) based on the above-mentioned random-mask

model. The result is shown in Figure 4(a). It is obvious

that closer neighboring latents reduce much more bit rate,

and neighbors with a distance of more than 2 elements in-

fluence the bit saving negligibly.

To dig deeper, we analyze how the context models help

save rate. With context modeling, the entropy model esti-

mates decoding latents ŷi conditioned on those visible al-

ready decoded latents ŷj<i. Viewing those latents on dif-

ferent locations as samples from correlated virtual coding

sources Ŷi and Ŷj<i, the mutual information I(Ŷi; Ŷj<i) be-

tween them is recognized by context model and partially

removed from bits used to encode ŷi. According to the

Slepian-Wolf coding theory [33], the optimal bit rate:

R̂ = H(Ŷi, Ŷj<i) = H(Ŷi) +H(Ŷj<i)− I(Ŷi; Ŷj<i)

is theoretically reachable. Therefore, provided that the

training is sufficient, a context modeling pattern referring to

latents with more mutual information I(Ŷi; Ŷj<i), or simply

saying, more causal relationship, saves more bit rate.

On the other hand, spatial redundancy is an important ba-

sis of image and video compression. Strong self-correlation

exists in digital images, and adjacent pixels are likely to

have a stronger causal relationship. Empirically, convolu-

tion outputs partially keep such redundancy because of lo-

cality [6], even when using scale hyperprior [26, 10]. So the

latents still retain a similar redundancy.

That tells how the distance between referred latents and

decoding latents influences the bit saving of context mod-

eling in learned image compression. Nearer latents have

0 1 2 3 4

0
1

2
3

4

0.72% 1.71% 3.18% 1.75% 0.74%

1.97% 4.15% 6.93% 4.11% 2.00%

4.22% 8.14% 8.16% 4.29%

2.04% 4.05% 6.93% 4.18% 1.95%

0.71% 1.66% 3.14% 1.69% 0.65%
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a) (b)

Figure 4. (a) Rate saving ratios of single-reference masks tested on

Kodak images [17]. (b) For each single-reference mask, only one

location is set to 1 (black) and others are set to 0 (white).

a stronger causal relationship, and more mutual informa-

tion can be re-calculated during decoding instead of being

stored and occupying the bit rate. Also, it helps explain

why modeling the context using masked convolution with

larger kernels or a stack of 5× 5 convolutions (with a much

larger receptive field) unexpectedly does damage to the RD-

performance, as reported in previous work [26]. Referring

to further neighbors that carry nearly no mutual information

helps little but increases the risk of overfitting.

This implies that a context modeling pattern referring to

more close neighbors is more likely to save more bit rate

than presently adopted serial context models. We then es-

tablish our parallel context model based on this motivation.

4.3. Parallel Decoding with Checkerboard Context

Figure 1(c) shows a checkerboard shaped context model.

Referring to four nearest neighbours, it outperforms both

3 × 3 and 5 × 5 serial context model in our further exper-

iments on random-mask model (we will discuss this exper-

iment in section 5.1 and Table 1, here we bring forward its

conclusion to motivate the proposal of checkerboard shaped

context models). Then we further extend it to a general form

with arbitrary kernel size (for an instance of 5 × 5 kernel,

see Figure 1(d)). Though it is impossible to apply it on the

whole latent feature map (or the adjacent latents will depend

on each other during decoding), it is helpful to building a

computationally efficient parallel context model without in-

troducing apparent RD performance loss compared with the

present serial context model.

To develop our parallel decoding approach, we only en-

code/decode half of the latents (white and red ones in Fig-

ure 1(c) and Figure 1(d)) using checkerboard shaped con-

text and hyperprior. The coding of the other half of latents,

which we call anchors, only depends on the hyperprior. To

implement these two sets of rules, we set the context fea-

ture of all anchors zero and adapt the calculation of entropy
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𝒈 𝒄𝒎 𝒈 𝒆𝒑𝒈 𝒆𝒑
AD AD

: entropy parameter

: zero

: hyperprior feature

: context feature

: useless value / placeholder

PASS 1 (anchor decoding) PASS 2 (non-anchor decoding)

: latent

Figure 5. Illustration of the proposed two-pass decoding. gcm is the context model with a checkerboard mask and gep is the parameter

network. Entropy parameters Φanchor and Φnon−anchor are estimated in turn. To decode the latents (orange blocks) from bitstream (not

given in the diagram), useless values (gray blocks) in estimated entropy parameters are removed and the remained ones (blue blocks) are

flattened and input into arithmetic decoder (AD). For further implementation details, please refer to the supplementary material.

parameters Φ in eq. 4 to a spatial location conditioned form:

Φi =

{

gep (hs(ẑ),0)i, ŷi ∈ ŷanchor

gep (hs(ẑ), gcm(ŷanchor;M ⊙W ))
i
, otherwise

(8)

where gcm is the masked convolution as described in eq. 5

conditioned on a checkerboard-shaped mask M . Its in-

put ŷanchor is the set of anchors and i is the index for the

i-th element ŷi in latent ŷ. For approaches using mean-

scale Gaussian entropy models, the entropy parameter Φ =
(µ,σ), and for methods adopting GMM Φ consists of K

groups of π(k), µ(k) and σ(k).

When anchors are visible, the context features of all non-

anchors can be calculated in parallel by a masked convo-

lution. Anchors’ decoding is also run in parallel, so the

entropy parameter calculation in eq. 4 for decoding can be

performed in two passes, which is much more efficient than

the serial context model.

4.3.1 Encoding Latents in One Pass

Here we reformulate eq. 8 to illustrate that the encoding

process can be done within one pass. By one pass we mean

entropy parameters Φ of all the latents are obtained in par-

allel without element-wise sequential calculation. Let ŷhalf

denotes the latents with all non-anchors set to zero:

(ŷhalf)i =

{

ŷi, ŷi ∈ ŷanchor

0, otherwise
(9)

Since now the binary mask M is checkerboard-shaped, if

input ŷhalf into gcm, according to eq. 5 we have:

gcm(ŷhalf)i =

{

bŷi
, ŷi ∈ ŷanchor

gcm(ŷanchor)i, otherwise
(10)

where bŷi
∈ b is the corresponding bias term added to

ŷi. Similar to ŷhalf , let bhalf denote a feature map with

all elements on anchor locations set to b and the others set

to zeros. Because gep is usually implemented as a point-

wise transform consisting of a stack of 1 × 1 convolu-

tions [26, 10], we can re-write eq. 8 to:

Φ = gep (hs(ẑ), gcm(ŷhalf)− bhalf) (11)

During encoding (and training) all latents in ŷ are visible,

so we can simply generate ŷhalf from ŷ by setting its non-

anchors to zero and then calculate all entropy parameters

Φ in parallel with only one pass of context model and pa-

rameter network. Finally, we flatten and rearrange ŷ and

Φ and then encode anchors and non-anchors into the bit-

stream in turn. We will discuss cheap and parallel ways to

get ŷhalf and bhalf in the supplementary material. Hence,

only an element-wise subtraction in eq. 11 is newly intro-

duced to the encoding process for using the checkerboard

context model, which won’t slow down the encoding.

4.3.2 Decoding Latents in Two Passes

At the beginning of decoding, the hyper latent ẑ can be de-

compressed directly by an arithmetic decoder (AD) from

the bitstream using code probability pẑ . Then the hyper-

prior feature hs(ẑ) is calculated. After that, there are two

decoding passes to obtain whole latent ŷ, as shown in Fig-

ure 5.

In the first decoding pass, entropy parameters of anchors

Φanchor are calculated with the context feature set to zero

according to eq. 8. Then the conditional probability pŷ|ẑ
of anchors is determined by these entropy parameters. Now

the anchors, half of all the latent elements in ŷ, can be de-

coded by AD. Then decoded anchors become visible for

decoding non-anchors in the next pass.
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In the second decoding pass, the context feature for

non-anchors can be calculated using proposed checkerboard

model and entropy parameters of them are calculated from

concatenated hyperprior feature and context feature. Then

AD can decompress the remained half of ŷ (those non-

anchors) from the bitstream and we obtain whole latent ŷ.

Finally, we get reconstructed image x̂ = gs(ŷ).

4.3.3 Structure and Analysis

As an example, Figure 6 shows how we adapt the structure

of the autoregressive model [26] by replacing its serial con-

text model with proposed checkerboard context model. We

don’t modify other components of the autoregressive model

for fair comparison.

For convolution kernel size of k, k2

2 neighbors evenly

distribute around the center (as is shown in Figure 1(c)) and

contribute to the context for each non-anchor spatial loca-

tion. Though only half of the latents refers to their neigh-

bours now, a checkerboard context model can extract more

causal information from decoded neighbours to save more

bit rate. This compensates the potential BPP increase when

compressing anchors without using any context in our pro-

posed method.

Compared with the serial context model [26] which re-

quires H×W sequential steps to decode a H×W×M latent

feature map, our proposed parallel model allows a constant

step of 2 to decode such latents, where H × W × M
2 la-

tent representations are processed in parallel. Considering

that large-size images with more than one million pixels

are produced and shared frequently nowadays, this paral-

lelizable checkerboard context model brings significant im-

provement on practicality.

5. Experiments

We implement representative previous works and our

proposed methods in PyTorch [29]. We choose the largest

8000 images from the ImageNet [12] validation set as our

training data, where each image has more than one million

pixels. Following previous works [5, 6], we add random

uniform noise to each of them and then downsample all the

images. We use Kodak dataset [17] and Tecnick dataset [2]

as our test set.

During training, before fed into models all input images

are randomly cropped to 256 × 256 patches. All models

are trained for 2000 epochs (i.e. 2M steps) with a batch-

size of 8 and learning rate of 10−4 if not specified. Sadam

optimization [7] is adopted on each convolution layer for

training stability.

5.1. Toy Experiments on Random­Mask Model

We adapt the architecture of Minnen2018 [26] by replac-

ing its context model by a 5 × 5 random-mask convolution

description Kref RM η(M)
non-reference (R0) 0 0.4332 0.0%

serial 3× 3 (Fig. 1(a)) 4 0.3928 9.3%

serial 5× 5 (Fig. 1(b)) 12 0.3817 11.9%

checkerboard 3× 3 (Fig. 1(c)) 4 0.3651 15.7%

checkerboard 5× 5 (Fig. 1(d)) 12 0.3648 15.8%

all neighbours in 3× 3 8 0.3649 15.8%
Table 1. Various masks tested with the random-mask model. Kref

denotes the number of referred neighbours (i.e. number of ones in

the mask). RM and η(M) denote the BPP and rate saving ratio

when feeding mask M to the random-mask model. The row all

neighbours in 3 × 3 refers to the mask where all 8 neighbours

surrounding the center are set to 1. Note that the random-mask

model is not designed as an actual codec, during decoding we can

use entropy model parameters obtained in the encoding process,

which is not allowed in actual decoder.

to obtain the random-mask model mentioned in section 4.1.

Here we further discuss its details. To generate a binary

mask, each location of the mask is sampled from {0, 1} in

equiprobability. During training, new random masks are

generated in every iteration. To train such a model with

random-mask context, we set λ = 0.01 and N = M = 256
for MSE optimization. On the trained model we perform

two toy experiments:

• Single Reference Mask for Causal Estimation. As

above mentioned, we estimate the causal relationship

between latent pairs by using 5 × 5 masks with only

one location set to 1 and calculating their η on Kodak.

Figure 4(a) shows the result which implies that the mu-

tual information between latents decays quickly as the

spatial distance between them increases.

• Performance of Various Masks. We test several

masks using the random-mask model and post a brief

report in Table 1. It indicates that simply increas-

ing the number of referred neighbours (i.e. Kref in

the table) doesn’t always help save bit rate, because

the pattern referring to 4 adjacent neighbours (the row

checkerboard 3×3) performs much better than the pat-

tern referring to 12 left-top neighbours (the row serial

5×5). Also, even referring to all 8 surrounding neigh-

bours cannot outperform checkerboard 3×3. However,

masks referring to more adjacent neighbours (the last

three rows) always perform better. This further proves

that closer neighbours play much more important roles

in context modeling. Motivated by this experiment, we

establish our parallel context model based on checker-

board 5× 5.
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Figure 6. Previously proposed framework of learned compression model using context based autoregressive entropy model [26]. We

replace the serial context model with the proposed checkerboard convolution. Blue and red lines denote encoding and decoding data flow

respectively. Processes shared by both encoding and decoding are represented by yellow lines.

architecture (N=192) Ballé2018
Minnen2018 Cheng2020

w/o context serial parallel(ours) serial parallel(ours)

Kodak (768× 512) 26.34 26.41 1323.66 29.66 1395.35 75.23

Tecnick (1200× 1200) 83.28 86.31 4977.98 95.46 5296.16 259.37
Table 2. Total decoding time averaged on Kodak and Tecnick (ms). Feature map size of each Kodak image is 48×32×M and feature map

size of each Tecnick image is 75× 75×M . Ballé2018 is the earlier context-free hyperprior model [6] while Minnen2018 and Cheng2020

represent the serial autoregressive structure [26] and its Gaussian Mixture Model (GMM) and attention involved adaption [10] respectively.

For models marked as serial the serial context models are adopted and for parallel ones the proposed checkerboard context is used.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Bits Per Pixel

28

30

32

34

36

PS
N

R

Cheng2020 with checkerboard, 6M steps (ours)
Minnen2020, cc10 [26]
Cheng2020 [10]
Cheng2020 with checkerboard, 1M steps (ours)
Minnen2018 [25]
Minnen2018 with checkerboard (ours)
Minnen2018 w/o context [25]
BPG (4:4:4) [8]
Ballé2018 [6]
JPEG [15]

Figure 7. RD curves of various learned or manually designed

image codecs. The results are averaged on Kodak. Except for

two models with our proposed context model, all data are reported

by prior works. All learned models are optimized for MSE. For

MS-SSIM optimization results please refer to the supplementary

material.

5.2. Checkerboard Context Model V.S. Serial Con­
text Model

We evaluate our checkerboard context model and the par-

allel decoding method based on two previous architectures

using serial context: Minnen2018 [26] and Cheng2020 [10].

As is explained in section 4.3.3 and shown in Figure 6 using

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Bits Per Pixel

28

30

32

34

36

PS
N

R

Cheng2020 [10]
Cheng2020, 1M steps (reproduction)
Cheng2020 with checkerboard, 1M steps (ours)
Minnen2018 [25]
Minnen2018 (reproduction)
Minnen2018 with checkerboard (ours)
Ballé2018 [6]

Figure 8. Comparison of parallel and serial context models on

Minnen2018 and Cheng2020. Curves marked as ours and repro-

duction are trained on our dataset using above specified settings,

while the rest are reported results.

Minnen2018 as an example, we do not change any other ar-

chitectures except replacing the serial context model by the

proposed one to ensure fair comparisons.

To compare the performance of different context mod-

els, we implement these two baseline models, and for each

baseline we train its adaption with parallel context model

under the same settings. The detailed experimental settings

are:
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Minnen2018 (N=192) serial parallel(ours)

hyper synthesis 1.26 1.42

parameter calculation 1302.42 4.75

latent synthesis 20.98 23.49

total 1323.66 29.66
Table 3. Running speed of Minnen2018’s each decoding process

(ms). In hyper synthesis and latent synthesis, the decoders hs and

gs are invoked respectively. In parameter calculation, context fea-

tures and entropy parameters are calculated by gcm and gep.

• Cheng2020. We train Cheng2020 following their re-

ported settings, i.e. K = 3, λ = {0.0016, 0.0032,

0.0075, 0.015, 0.03, 0.045}, N = M = 128 for the three

lower λ and N = M = 192 for the rest1. For reproduc-

tion we train 1M steps, and we find that training up to

6M steps can lead to an even better RD performance

especially at high bit rates. During training, after 3M

steps we decay the learning rate from 10−4 to 5×10−5.

• Minnen2018. As the exact setting was not reported,

we choose to use the same λ setting as Cheng2020. We

follow the suggestion on reproduction from authors2 to

use N = 128 and M = 192 for small λ and N = 192 and

M = 320 for big λ and consider λ ≥ 0.015 (corre-

sponding BPP > 0.6) as big ones. For all models we

train 6M steps and the learning rate decays to 5×10−5

after 3M steps.

5.2.1 Decoding Speed

We evaluate inference latency of both serial and parallel

models on Nvidia TITAN XP: Table 2 and Table 3. Notice

that for proposed parallel models, the context model and

the parameter network are invoked twice in the parameter

calculation process. For serial models, context model and

parameter network are called H ×W times for decoding a

H×W ×M feature map. For each time we crop the visible

neighbours to 5 × 5 patches then feed them into the serial

context model for a fast implementation [38] to pursue a

fair comparison. It is obvious that a serial context model

becomes a bottleneck even when decoding relatively small

images. Meanwhile, the proposed two-pass decoding model

has a much faster running speed on parallel devices, mak-

ing spatial context based image compression models more

practical.

5.2.2 Rate-Distortion Performance

We train and compare proposed checkerboard context

model and the serial model based on Minnen2018 and

1The hyper-parameter M is not introduced in the original paper. Here

we let M denote number of output channel of the encoder ga’s last layer.
2https://groups.google.com/g/tensorflow-

compression/c/LQtTAo6l26U/m/cD4ZzmJUAgAJ

Cheng2020 with settings as mentioned above. Figure 8

shows their RD-curves evaluated on Kodak (the ones

marked as with checkerboard). Compared with original

models, using such a parallel context model only slightly

reduces RD performance on Kodak. However, it still out-

performs the context-free hyperprior baseline (Ballé2018 in

the figure) significantly (compared with Ballé2018, BDBR

−17.0%/−27.4% for Minnen2018/Cheng2020 using our

checkerboard context model). Since it removes the limi-

tation of computational efficiency, we think the quality loss

is acceptable.

For completeness, we also compared our proposed

models with several previous learned or conventional

codecs including a recently proposed channel conditioned

model [27], a SOTA architecture without using spatial con-

text. See Figure 7, the channel conditioned model per-

forms better than Cheng2020 with a parallel context model

at lower bit rate but slightly worse at higher bit rate. As

discussed by the author, a potential combination of spa-

tial context and channel-wise adaption is promising to fur-

ther improve RD performance of present approaches, since

only the spatial-wise adaption can help remove spatial re-

dundancy from source images. However, investigating the

proper way of combining the two different type of adap-

tive modeling is beyond the scope of this paper as our topic

is to speed up the spatial context model. To our under-

standing, the proposed parallel and efficient spatial context

model is an important basis for future researches on the

multi-dimension context modeling techniques, or the run-

ning speed will be inevitably limited by the low-efficiency

serial context model.

We have also tested all above-mentioned models on Tec-

nick dataset and come to the same conclusion that the pro-

posed checkerboard context model can be used as an effi-

cient replacement to the serial context. For more RD curves

and results please refer to the supplementary material.

6. Discussion

Serial context models for learned image compression are

computationally inefficient. We propose a parallel context

model based on the checkerboard-shaped convolution and

develop a two-pass parallel decoding scheme. Compared

with the serial context model, it allows decoding to be im-

plemented in a highly parallel manner. After applying it

to two representative context model involved baselines, we

prove that it greatly speeds up the decoding process on par-

allel devices while keeps a competitive compression perfor-

mance. Also, our proposed approach does not require any

changes in model structure or model capacity, so it is almost

a drop-in replacement for the original widely used serial

context model. Therefore, the proposed approach signifi-

cantly improves the potential performance of SOTA learned

image compression techniques with spatial context models.
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