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Abstract

Is critical input information encoded in specific sparse

pathways within the neural network? In this work, we dis-

cuss the problem of identifying these critical pathways and

subsequently leverage them for interpreting the network’s

response to an input. The pruning objective — selecting the

smallest group of neurons for which the response remains

equivalent to the original network — has been previously

proposed for identifying critical pathways. We demonstrate

that sparse pathways derived from pruning do not neces-

sarily encode critical input information. To ensure sparse

pathways include critical fragments of the encoded input in-

formation, we propose pathway selection via neurons’ con-

tribution to the response. We proceed to explain how critical

pathways can reveal critical input features. We prove that

pathways selected via neuron contribution are locally linear

(in an ℓ2-ball), a property that we use for proposing a fea-

ture attribution method: “pathway gradient”. We validate

our interpretation method using mainstream evaluation ex-

periments. The validation of pathway gradient interpreta-

tion method further confirms that selected pathways using

neuron contributions correspond to critical input features.

The code1 2 is publicly available.

1. Introduction

Understanding the rationale behind the response of a

neural network is of considerable significance. Such trans-

parency is required for adoption and safe deployment in

mission-critical domains. Interpreting the response also

helps in debugging and designing neural networks, and

quenches the intellectual curiosity over how neural net-

works function [15, 47, 24, 63, 10, 50].

What insights can we acquire about the underpinnings

1https://github.com/CAMP-eXplain-AI/PathwayGrad
2https://github.com/CAMP-eXplain-AI/RoarTorch

of a neural network’s response by putting the networks un-

der the microscope and analyzing neurons and pathways?

By ”pathway”, we refer to a union of paths (equivalently a

sub-network) that connect the input to the output. Discov-

ering to what patterns neurons correspond — also known as

neural decoding in computational neuroscience [6] — has

revealed human interpretable concepts encoded in neurons

of artificial neural networks, e.g. curve and circle detectors

[41, 65]. Analyzing the neural pathways has recently re-

vealed human interpretable connections between concepts

encoded within each neuron on the pathway, e.g. circles

being assembled from curves [40]. In this work we dis-

cuss pathways responsible for the network’s response given

a specific input, but how can we identify these pathways?

Deep rectified neural networks encode the input informa-

tion using a sparse set of active neurons [12], and their infer-

ence can be deemed as a pursuit algorithm for sparse coding

[43, 59]. Such sparse coding of information is akin to how

biological neurons encode information in the brain [42, 16].

Yu et al. [64] reported that the pathways of active neurons

in artificial neural networks overlap significantly for inputs

of a given class. Recently, [63] proposed using the pruning

objective and knowledge distillation [19] to show that sig-

nificantly higher levels of sparsity (∼87% for VGG-16 [54]

on ImageNet [7]) can be achieved while keeping the predic-

tion intact. These highly sparse pathways are reported as

the critical paths and are shown to be different for inputs of

different classes and adversarial inputs [45, 63, 64].

We first investigate, whether these highly sparse path-

ways derived from the pruning objective indeed encode crit-

ical input features. We show that the pruning objective has

solutions that are not critical pathways, even though they

have the same response as the original network. To illus-

trate how the pruning objective can result in such pathways,

we construct a pathological greedy pruning algorithm that

by design searches for irrelevant pathways while satisfying

the pruning objective. Furthermore, we analyze the path-

ways selected by distillation guided routing [63] and ob-
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serve a similar phenomenon. We also use feature visual-

ization [41, 30] to decode and semantically analyze the

pathways. If these pathways do not encode critical input

features, how can we find such pathways? Numerous works

have studied the importance of individual neurons for the

neural response, and how each neuron encodes information

specific to one or a subset of classes [69, 4, 36, 41]. It

is therefore intuitive that selected sparse pathways should

encompass important/critical neurons for the correspond-

ing response. We thus investigate selecting pathways based

on neuron contributions as opposed to the pruning objec-

tive. In order to compute the importance of neurons, we

use notions of marginal contribution and the Shapley value

[51, 29, 2, 60, 70]. The first section of the work is devoted

to the discussion of critical pathways.

We proceed to answer how critical pathways can help

us interpret the response of the network. We prove that

in rectified neural networks, pathways selected by neuron

contributions are locally linear. We leverage this property

and propose an input feature attribution methodology

which we refer to as ”pathway gradient”. We evaluate

our attribution methodology with input degradation [48],

sanity checks [1], and Remove-and-Retrain (ROAR) [20]

on Cifar10 [25], Bridsnap [5], and ImageNet [7] datasets.

By validating our attribution methodology, we also validate

that selected pathways using neuron contributions indeed

correspond to critical input features. In summary, the main

contributions of the paper are:

• We show that the pruning objective does not neces-

sarily extract critical pathways. We illustrate how the

pruning can fail by proposing a pathological greedy

algorithm that by design searches for irrelevant pathways.

Subsequently, we propose selecting pathways based on

neuron contributions instead.

• We prove that critical pathways selected by neuron con-

tributions are locally linear (ℓ2-ball) in rectified networks.

Using local linearity, we propose a feature attribution

approach, ”pathway gradient”, that reveals input features

associated with features encoded in the critical pathways.

• We empirically show that computing contribution (ap-

proximated Shapley value) of neurons rather than input

pixels, improves input feature attribution.

2. Background and related work

Feature visualization / Neural decoding: This task

identifies which input patterns activate a neuron. One

family of solutions searches for image patches within the

dataset that maximize the activations of neurons [67, 65, 4].

Another series of works generates images that maximize

certain neuron activations [38, 41, 8, 53, 30].

Feature attribution: Here, the problem is to find what

features in the input are important for the response of a neu-

ron. The notion of importance/contribution is grounded in

the effect of removal of a feature on the response. The

amount of output change after removing the feature is

marginal contribution, and the average of marginal con-

tributions of a feature in all possible coalitions with other

features in the input is the Shapley value [51]. Due to com-

putational complexity, several works such as integrated gra-

dients (IntGrad) [61] and DeepSHAP [29] approximate the

Shapley value. Recently it has been shown that many ap-

proximations break the axioms [60], leaving integrated gra-

dients as a promising candidate.

A principal class of feature attribution methods use net-

work gradients. [53, 3] propose the input gradient it-

self as attribution. Guided backpropagation (GBP) [57],

LRP [34], and DeepLIFT [52] modify gradients during

back-propagation. Class Activation Maps (CAM) [68] and

GradCAM [50] perform a weighted sum of the last con-

volutional feature maps. Grounded in marginal contribu-

tion, other approaches (perturbation methods) mask the in-

put [10, 9, 44, 62] or neurons [9, 49] and observe the output

(or information flow [49]).

Evaluation of feature attribution methods: Early eval-

uation of interpretability relied on human perception, e.g.

evaluation by localization accuracy [68] or pointing game

[66]. However, the model could be using features outside

the human annotation or even non-robust features as in [21],

and such localization-based evaluations penalize the correct

attribution method. Moreover, [39, 23, 55] show/prove that

several methods with human interpretable attributions gen-

erate the same attribution even after the network’s weights

are randomized. These methods are GBP [57], Deconvo-

lution [65], DeepTaylor(=LRP-α1β0)[34] and Excitation

BackProp [66]. To evaluate such sensitivity to model pa-

rameter randomization, sanity checks [1] have been pro-

posed. Recently, input degradation [48] and ROAR [20]

experiments have been introduced for evaluating feature im-

portance. Each of these evaluations measure a different per-

spective which we explain in section 4.2.

3. Selection of critical pathways

3.1. Setup and notation

Consider a neural network ΦΘ(x) : R
D → R with

ReLU activation functions, parameters Θ = {θ1, ..., θL},
and L hidden layers with Ni neurons in layer i ∈ {1, ..., L}.

The total number of neurons is N =
∑L

i=1 Ni. We use

z
i ∈ R

Ni to represent pre-activation vector at layer i, and

a
i ∈ R

Ni for representing the corresponding activation vec-

tor, where a
i = ReLU(zi), zi = θiai−1 + b

i, and a
0 = x.

Note, our definition of Φθ(x) has a single real valued out-

put. The reason is that we are considering the neural path-

way to one neuron, and this neuron could in fact be a hidden

neuron in a larger network. Thus the response is defined by
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Φθ(x) = θL+1
a
L + b

L+1. Each individual neuron in layer

i is specified by index j ∈ {1, ..., Ni}, thus denoted by z
i
j

and a
i
j . The vectors z

i and a
i are specifically associated

with input x. The vector containing activations of all N
neurons is denoted by a = [aij ]

N (same notation for vectors

of other entities related to neurons). {aij}
Ni

j=1 denotes the

set of neurons in layer Ni, and {0, 1}N denotes a set of size

N containing 0s and 1s.

3.2. Selection by pruning objective

We first describe the pruning objective [28] and discuss

how a solution satisfying this objective does not necessitate

it being critical. Let m = {0, 1}N be a mask that represents

the neurons to be kept and pruned. The pruning objective

given an input x is then defined as:

argmin
m

L (Φθ(x),Φθ(x;m⊙ a)) s.t. ‖m‖0 ≤ κ, (1)

where ⊙ and L denote the Hadamard product and the loss

respectively. κ controls the sparsity. Equation (1) is a com-

binatorial optimization problem and a plethora of solutions

exist [26, 18, 17, 33, 28].

Does the pruning objective result in sparse pathways

that encode the input? Rectified neural networks have

sparse positive activations [12, 42, 43, 59], and encode the

input in a sparse set of active neurons [42, 12]. Thus, the

network represents discriminative and infrequent features

(i.e. features with high information) by sparse/infrequent

activation values. In this regime, positive activations are

detectors of features [4, 8, 67, 41, 65] and encode features

that exist in the input. Zero activations represent missing-

ness of features. Therefore, if a neuron is dead (zero), its

corresponding features do not exist in the input. We also

posit that a dead neuron does not contribute to the output

(considering zero activation as a baseline for missingness):

Lemma 1 (Dead Neurons) Considering a
i as the input at

layer i to the following layers of the network defined by

function Φ>i
θ (.) : RNi → R, the Shapley value of a neu-

ron a
i
j defined by

∑

C⊆{ai
j
}
Ni
j=1

\ai
j

|C|!(Ni−|C|−1)!
Ni

(Φ>i
θ (C∪

a
i
j)− Φ>i

θ (C)) is zero if the neuron is dead (aij = 0).

Lemma 1 (proofs for lemmas and propositions are provided

in the appendix) shows that dead neurons have a Shapley

value of zero, thus do not contribute to the response. We

Algorithm 1: Pathological greedy pruning

initialize m
i
j = 1 ∀ i, j

while ‖m‖0 ≥ κ do

sij ← |a
i
j∇a

i
j
Φθ(x)|

if sij ≤ sκ ∧ sij 6= 0 then m
i
j ← 0 ;

Figure 1. Dead Neuron Selection of Pruning Objective. The

percentage of originally dead neurons in the selected pathways

of different methods reported for sparsity of 90% (see appendix

for more sparsity values). Evaluation on pathways extracted from

VGG-16 on 1k ImageNet images. All pathways selected by prun-

ing objective contain originally dead (now active) neurons. The

observation that when selecting the top 10% of critical neurons,

pruning methods select neurons from the dead regions of the net-

work (which after pruning become active) points to the fact that

they are selecting pathways unrelated to the input. Our proposal is

to use neuron contributions (our NeuronIntGrad, NeuronMCT).

proceed to explain how the pruning objective can select

originally dead neurons as critical neurons. Removing an

active neuron results in a change in inputs to next layer’s

neurons and thus may change their activation value, and this

can result in activating an originally dead neuron. We con-

sider a sparse selected pathway undesirable if it contains

neurons that were originally dead, but have become active

due to the pruning of other neurons. Such a selected path-

way is an artificial construct, which does not reflect the orig-

inal sparse encoding of the input.

Pathological greedy pruning: We construct a greedy

algorithm that by design searches for irrelevant pathways

while solving the pruning objective (Eq. (1)). The algorithm

illustrates how originally dead neurons turn active and be-

come part of the highly sparse selected pathway that pro-

duces the same network response. Our greedy approach

(Alg. 1) first ranks all neurons based on their relevance

score for the response. The relevance is determined by the

effect of removing a neuron, approximated by Taylor ex-

pansion similar to [33, 37]. The relevance score sij is then:

sij = |Φθ(x)− Φθ(x;a
i
j ← 0)| = |aij∇a

i
j
Φθ(x)| . (2)

Next we remove the neuron(s) with the lowest rank, and al-

ternate between rank computation and removal. However,

we tweak the algorithm to find pathways that contain orig-

inally dead neurons. At each removal step, we remove the

lowest contributing neuron that is not dead (without this

crucial step, dead neurons will be pruned before others as

their relevance score is zero). By removing a non-zero neu-

ron, the activation pattern can change and some originally
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Figure 2. Pathway Analysis. Overlap between pathways of methods: a) in entire network. b) layer-wise overlap between pathways of all

methods and NeuronIntGrad. Among the pruning-based methods, only DGR(init=1) does not diverge far from originally active pathways.

dead neurons can activate and become included in the path-

way. Our algorithm illustrates that solving for the pruning

objective can result in undesirable pathways.

Distillation Guided Routing: DGR [63] relaxes the

pruning objective (Eq. (1)) by replacing m = {0, 1}N with

continuous valued gates 0 ≤ λi
j ∈ R. To induce sparsity,

the objective is regularized with an ℓ1 norm, i.e.
∥

∥λi
j

∥

∥

1
:

min
Λ
L(Φθ(x),Φθ(x; Λ⊙ a)) + γ

N
∑

k=1

∥

∥λi
j

∥

∥

1
s.t. λi

j ≥ 0 ,

(3)

where Λ = [λi
j ]
N is the vector of all λi

j . In our experiments

we find that the initial value of Λ plays a significant role.

Wang et al. [63] use λi
j = 1 ∀i, j without discussing its role.

We denote different initilizations with DGR(init=value).

3.3. Selection by neuron contribution

Individual neuron ablation [69] and network dissec-

tion [4] reveal that specific neurons are critical for cer-

tain classes. It is therefore intuitive that critical pathways

contain important neurons. The effect of removing a unit,

|Φθ(x) − Φθ(x;a
i
j ← 0)|, is called the marginal contri-

bution. Computing the exact value for the marginal con-

tribution of all neurons is computationally expensive. As

we have to ablate each neuron (total N ) in the network

and observe its effect after inference. Therefore we use a

Taylor approximation similar to Eq. (2), cij = |Φθ(x) −

Φθ(x;a
i
j ← 0)| = |aij∇a

i
j
Φθ(x)|, where c

i
j denotes

the contribution of neuron a
i
j . Pathways selected by this

method are hereon referred to as NeuronMCT, where MCT

stands for Marginal Contribution Taylor.

The Shapley value is the unique definition that satis-

fies desirable axioms of feature attribution [29]. It is de-

fined as the average of marginal contributions of a fea-

ture in all possible coalitions with other features in the in-

put. For each neuron, its coalitions with neurons of the

same layer are considered. This results in 2Ni−1 possible

coalitions. Considering all layers, the total required infer-

ence steps becomes
∑L

i=1 2
Ni−1, which is computationally

expensive. Thus we use an approximation method. The

IntGrad [61] method with baseline 0 is equivalent to the

Aumann-Shapley value, which is an extension of the Shap-

ley value to continuous setting [60].

The contribution c
i
j using IntGrad with baseline 0 is:

c
i
j = a

i
j

∫ 1

α=0

∂Φθ(αa
i
j ;x)

∂aij
dα (4)

Henceforth, the contributions assigned as such are referred

to as NeuronIntGrad.

Remark 2 NeuronMCT and NeuronIntGrad assign c
i
j = 0

to a neuron with a
i
j = 0 (dead neuron).

We denote a pathway by e = [eij ]
N , where e

i
j ∈ {0, 1}

are indicator variables for each neuron indicating whether

neuron belongs to pathway e. Having computed the con-

tributions cij , in order to select a pathway e = [eij ]
N , with

sparsity value κ, we select neurons with c
i
j ≥ cκ where cκ

is the contribution value of the corresponding sparsity κ in

a sorted list of contributions, i.e. if cij ≥ cκ then e
i
j = 1,

else e
i
j = 0.

Selecting the values higher than cκ is average-case

O(n). Thus the computational burden of selecting a path-

way depends on the contribution assignment procedure.

NeuronMCT requires one inference, and for NeuronIntGrad

we use 50 inference steps in the experiments. For both

methods, the ranking of the aij are performed network-wise,

and not layer-wise. We directly compare the contribution of

neurons from different layers. This is possible because in-

tegrated gradients satisfies completeness, and for each layer

i,
∑Ni

j=1 c
i
j = Φθ(x)− Φθ(a

i ← 0), making the scores di-

rectly comparable. For marginal contribution, by definition

the contribution is the change in the output, so the contribu-

tions are inherently comparable.

3.4. Pathway selection experiments

Pathway analysis To corroborate the claim that the prun-

ing objective results in undesirable pathways, we evaluate

the pathways extracted by the discussed methods from a
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Figure 3. Pathway Decoding. a) Generating an input that maximizes the network response while restricting the network to a specific

pathway selected by different methods. For the original network, the generated input contains class-specific (related to ”fig” class) features.

When restricted to active neurons (Active Subnet), an input similar to the original input is reconstructed. The reconstructed input for our

contribution-based methods (NeuronIntGrad, NeuronMCT) contains only the critical input features (the figs) of the original image. The

reconstructed images for pruning-based pathways (except DGR(init=1)) do not show any input related information. b) Feature visualization

of the top selected neuron of the final convolutional layer in each pathway (this experiment is only relevant for pathway selection methods).

The top neuron in NeuronIntGrad and NeuronMCT pathways encodes features related to the bird’s eye, which is highly relevant to the

input image. The top neurons in pruning-based pathways are associated with features not related to the input.

Figure 4. Feature Attribution via Pathway Gradient. The gradients of the locally linear critical pathways at different sparsity levels.

The pathway is selected using NeuronIntGrad. The pathways are locally linear and their gradient reflects the critical input features. As we

select sparser critical pathways, feature attribution reveals input features that are more critical. More examples in the supplementary.

VGG-16 [54] network for 1k ImageNet [7] images. We re-

port results for the pathways of 90% sparsity (more values

in appendix). Fig. 1 shows the percentage of previously

dead neurons in the selected pathways of all methods. We

observe that all pruning based methods converge to select-

ing undesirable pathways. ∼69% of neurons in the top 10%

selected neurons of GreedyPruning are originally dead neu-

rons. Another noteworthy observation is the effect of the

initial value of gates in the DGR method. When gates are

initialized to 1, the pathways do not drift away from the

original active pathway as much as they do with random

(uniform [0, 1]) initialization (DGR(init=r)). Nevertheless,

still ∼8% of neurons in the top 10% of DGR(init=1) are

originally dead neurons. We analyze the overlap of the se-

lected pathways using the Jaccard similarity between path-

way indicators e in Fig. 2a. Note the similarity between

NeuronIntGrad and DGR(init=1) compared to DGR(init=r).

This suggests that when initializing DGR with 1, the se-

lected pathways do not drift significantly to undesired path-

ways, and they still roughly contain the critical neurons, ex-

plaining why [63] observed meaningful pathways. We also

perform a layer-wise similarity analysis between pathways

in Fig. 2b. We observe that the overlap between pathways

of NeuronIntGrad and NeuronMCT increases as we move

towards final layers, implying that the overall difference be-

tween their pathways is due to differences in earlier layers.

Pathway decoding Feature visualization estimates the in-

put that maximizes a neuron’s response. In order to gener-

ate an image xG that maximizes the response, the network’s

weights are frozen and optimization by gradient descent is

done on the input, i.e. argmax
xG

Φθ(xG). Such optimiza-

tion without any regularization or priors is prone to generat-

ing adversarial artifacts [14, 41]. Hence, we optimize with

preconditioning and transformation robustness techniques

as in [41] to generated natural looking images. The question

we are interested in here is what the pathway corresponding

to the input can tell us about that input. This allows us to

semantically evaluate the pathways derived from different

pathway selection methods. In Fig. 3a, we generate inputs

that maximize the network response while the network is

restricted to different pathways. When considering the orig-

inal network, features related to the predicted (”Fig”) class

are visualized. When we restrict the network to the active

pathway (Active Subnet), optimization attempts to recon-

struct the image. At 98% sparsity we observe that, critical

features relevant to the predicted class are reconstructed for

contribution-based methods. This signifies that the selected
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sparse pathway has indeed encoded features relevant to the

prediction. However, for pathways selected by the pruning

objective (except DGR(init=1)), the reconstructions resem-

ble noise. In Fig. 3b, we perform feature visualization (us-

ing entire network) of the selected top neuron in the final

convolutional layer of each pathway. We observe that the

selected top neuron by NeuronMCT and NeuronIntGrad is

semantically highly relevant to the input, as the neuron is re-

sponsible for the bird’s eye. The top neuron of DGR(init=1)

is also relevant as it relates to feathers. While for the other

methods, the top selected neuron is semantically irrelevant,

further confirming that the selected pathways are not encod-

ing the input.

4. Interpreting response via critical pathways

In Section 4.1 we show that sparse pathways selected by

NeuronIntGrad and NeuronMCT are locally linear. The lo-

cal linearity is later used in Section 4.2 for input feature

attribution via ”pathway gradients” and understanding to

which features in the input the pathways correspond.

4.1. Local linearity of pathways of critical neurons

Networks with piecewise linear activation functions are

piecewise linear in their output domain [35], and thus are

linear at a specific point x, and ∀i, j:

Φθ(x) = (∇xΦθ(x))
⊤
x+ bL+1 ; zij = (∇xz

i
j)

⊤
x+ b

i
j

(5)

Although the network degenrates into a linear function at a

given point, it does not mean it is locally linear. Indeed both

the value [13] and the gradient [11] are unstable around a

point. To discuss the local linearity of the rectified network,

we need to define activation pattern [46, 27]:

Definition 3 (Activation Pattern(AP)) AP is a set of in-

dicators for neurons denoted by AP = {✶(aij)}
N where

✶(aij) = 1 if aij > 0 and ✶(aij) = 0 if aij ≤ 0.

The feasible set S(x) of an AP is the input regions where

the AP is constant and thus the function is linear. Let

B(x)ǫ,2 = {x̄ ∈ R
D : ||x̄ − x||2 ≤ ǫ} denote the ℓ2-

ball around x with radius ǫ, and let ǫ̂x,2 denote the largest

ℓ2-ball around x where the AP is fixed, i.e.

ǫ̂x,2
.
= max

ǫ≥0:Bǫ,2(x)⊆S(x)
ǫ (6)

ǫ̂x,2 is the minimum ℓ2 distance between x and the cor-

responding hyperplanes of all neurons z
i
j [27]. The hy-

perplane defined by neuron z
i
j at point x is {x̄ ∈ R

D :

(∇xz
i
j)

⊤
x̄ + b = 0} or {x̄ ∈ R

D : (∇xz
i
j)

⊤
x̄ + (zij −

(∇xz
i
j)

⊤
x) = 0}. If ∇xz

i
j 6= 0 then the distance between

x and z
i
j is

|(∇xz
i
j)

⊤
x+(zij−(∇xz

i
j)

⊤
x)|/||∇xz

i
j ||2 = |zij |/||∇xz

i
j ||2
(7)

For a neuron z
i
j , if ∇xz

i
j = 0, then z

i
j = b

i
j . In order for

the activation of this neuron to change, the ∇xz
i
j and con-

sequently the AP has to change. Therefore the distance is

goverened by neurons for which∇xz
i
j 6= 0. [27] prove that

ǫ̂x,2 = min
i,j
|zij |/||∇xz

i
j ||2. Since ∇xz

i
j 6= 0, the existence

of a linear region ǫ̂x,2 depends on |zij | not being zero.

Locally linear network approximation: In order to ap-

proximate the original model Φθ(x) with a selected path-

way e, we replace each neuron a
i
j which is not in the path-

way, i.e. eij = 0 with a constant value equal to the initial

value (aij) of that neuron. Note the new constant is not a

neuron anymore and thus does not propagate gradient. Re-

placing the neuron with its initial value keepsAP , and neu-

rons zij unchanged. We denote such an approximate model

by Φ̂θ(x; e). Proofs are provided in the appendix.

Proposition 4 In a ReLU neural network Φθ(x) : R
D →

R, for a pathway defined by [eij ]
N , if aij > 0 ∀ eij = 1, then

there exists a linear region ǫ̂x,2 > 0 for Φ̂θ(x; e) at x.

Proposition 5 Using NeuronIntGrad and NeuronMCT, if

cκ > 0, then Φ̂θ(x; e) at x is locally linear.

4.2. Input feature attribution via critical pathways

The gradient of a linear model represents the contribu-

tions of each corresponding input feature[32, 3, 53]. There-

fore several works perform a first-order Taylor approxima-

tion of the network [3, 53]. However, the gradients of net-

works are unstable and drastically change around an input.

To capture the true direction of change, SmoothGrad [56]

averages gradients and LIME [32] fits a linear model to the

input neighborhood. However, for a locally linear network,

the gradients are already stable (constant within a region)

in the linear region neighborhood. The gradient reflects the

contributions of features in that neighborhood. Based on

Proposition 5, the approximate model Φ̂θ(x; e) is locally

linear for NeuronMCT and NeuronIntGrad. Thus, we can

derive linear approximations for the model using the critical

pathways of the model and use their gradient as attribution

maps. We refer to this method as “pathway gradient”. We

use different levels of sparsity and observe the most crit-

ical input features for the response (Fig. 4). The attribu-

tion methodology is visually compared with other attribu-

tion methods in Fig. 5. For pathways selected via pruning,

as their pathways do not contain critical input information,

it would be senseless to use them for feature attribution.

There is no guarantee for their linearity as Proposition 4

requires all neurons within the pathway to be active.

Computing contribution of neurons vs. input pixels:

Computing the Shapley value [51] for pixels does not ac-

count for correlations between pixels3. Ideally, one should

3Correlation and interaction are different. The latter is related to effect

of features in different coalitions which is accounted for by Shapley value
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Figure 5. Comparison with Attribution Methods. Results for our method ”pathway gradient” are shown on the right (for pathways

selected by NeuronMCT and NeuronIntGrad). Our method provides pixel-level explanations as opposed to GradCAM [50]. GBP [57] is

visually pleasing, but it is merely reconstructing image (Sec. 2). Note the improvement of IntGrad (integrated gradients [61]) on the neurons

(NeuronIntGrad) over IntGrad on input (InputIntGrad). Also note the improvement of marginal contribution on neurons (NeuronMCT)

over direct implementation on input (InputMCT = input×gradient [52]). More examples for VGG-16 / ResNet-50 in the appendix.

Figure 6. Randomization-Sensitivity Sanity Check. [1] Similarity of attributions before and after network (ResNet-50, ImageNet) pa-

rameter randomization. High similarity after randomization suggests that the attribution method is not explaining the network.

know which pixels are correlated (e.g. belong to the same

object), and compute a single Shapley value for this group.

The Shapley value for a group is known as the General-

ized Shapley value [31]. There is an exponential number of

groups of pixels. We thus aim to compute the Shapley value

only for groups of correlated pixels e.g. an object (more in

the appendix). Within the pathway gradient framework, we

compute the Shapley value for neurons instead. Neurons in-

herently correspond to correlated groups of pixels. Thus we

are indirectly computing the Shapley value (contribution) of

those correlated groups of pixels. In our experiments, using

MCT and IntGrad on neurons (denoted by NeuronMCT and

NeuronIntGrad) results in considerably better attributions

compared to applying them only to input pixels (denoted by

InputMCT and InputIntGrad).

Baseline choice: The baseline in feature attribution rep-

resents the absence of a feature. In the image domain,

[65, 61] consider the zero (black image) as baseline. How-

ever, zero pixel values do not necessarily reflect the absence

of a feature [58, 22]. As explained in Sec. 3.2, zero neurons

represent missingness in sparse rectifier networks. The zero

baseline is therefore, more justified for neurons than for the

input space, and has been also used in [2, 52].

4.3. Feature attribution evaluation experiments

Grounding attribution in theoretical notions such as

Shapley value is desired [29, 60] (GradCAM, GBP, and

Gradients are not based on this notion). However, ex-

periments can point to specific shortcomings in methods,

e.g. the approximate Shapley value (IntGrad[61]) for pix-

els does not perform well in experiments, which may be

due to disregarding correlations between input pixels. Each

of our experiments examines the methods from a differ-

ent perspective. As explained in Sec. 2, visual evaluation

can be unreliable. Network parameter randomization san-

ity checks [1] evaluate whether the method is explaining

model behavior. Input degradation [48] and Remove-and-

Retrain (ROAR) [20] evaluate whether the attribution maps

are showing important features in the input (refer to ap-

pendix for details). We use TorchRay [9] for implemen-

tation of other attribution methods.

Network parameter randomization sanity checks [1]:

Several attribution methods, such as LRP−α1β0 [34], Ex-

citation Backprop [66], and (GBP)[57] generate the same

result after the network is randomly initialized, thus they

are not explaining the network [1, 55]. In this experiment,

parameters of the network are successively replaced by ran-

dom weights, from the last layer to the first layer. At each

step, the similarity between the attributions from the orig-

inal and randomized network are reported (Fig. 6) for 1k

ImageNet images (ResNet-50). It is noteworthy that Grad-

CAM seems sensitive here, but the experiment is unfair to

it due to the low dimensionality of its maps [1]. Our attri-

butions confidently pass this sanity check.

Input degradation - LeRF [48]: Pixels are removed

based on their attribution score and the output change is

measured. We remove least relevant features first (LeRF).

LeRF evaluates methods based on sufficiency of the fea-

tures for classification and how well methods avoid assign-

ing scores to unimportant features. Results are reported for

ResNet-50 on ImageNet, Birdsnap, and Cifar. We observe

(Fig. 7(a,b,c)) considerable improvement of NeuronIntGrad
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Figure 7. Feature Importance. a,b,c) Input degradation-LeRF: Removes input pixels based on their importance (least relevant features

first) and measures output change. Represents how well the method avoids attributing the response to unimportant features (Bridsnap, and

ImageNet). d,e) Remove and retrain (ROAR): Removes top 10/30/50/70/90 percent of important pixels and retrains on the modified

inputs (Birdsnap, Cifar10). If the accuracy does not drop, the attribution method is not highlighting important features.

and NeuronMCT over InputIntGrad and InputMCT.

Remove and retrain (ROAR) [20]: In input degrada-

tion experiments, the change in output might be a result of

the network not having seen such artifacts during training.

Therefore the ROAR benchmark retrains the network on the

modified images. If the accuracy does not drop, the attribu-

tion method is not highlighting important features. The ex-

periment is performed for different percentiles of removed

pixels. Due to the large number (105) of retraining sessions

required, we exclude ImageNet and use Cifar10 (ResNet-

8) and Bridsnap (ResNet-50) datasets. Gradients, GBP, In-

putMCT and InputIntGrad are not revealing features that

the model learns to use during training. We observe that

NeuronIntGrad and NeuronMCT immensely improve their

input counterparts (Fig. 7d,e). NeuronIntGrad and Neuron-

MCT are performing equally to GradCAM. GradCAM ben-

efits from interpolation and has smooth heatmaps, which

seem to help with ROAR performance. We see that smooth-

ing (by morphological opening) on our methods (referred to

by * in Fig. 7), performs best.

In summary, the attribution experiments show that attri-

bution via critical pathways is a valid methodology with

fine-grained attributions. Fine-grained (pixel-level) attri-

butions convey more accurately which features are impor-

tant to users (Fig. 5). The results support that computing

marginal contribution and the Shapley value for neurons im-

proves attribution over directly computing them for input

pixels. We posit that (Sec. 4.2) this can be due to the Shap-

ley value for pixels not accounting for correlations between

them. Whereas, computing the Shapley value of neurons

implicitly considers correlations between pixels. The fea-

ture attribution experiments also validate that selected path-

ways using neuron contributions indeed correspond to crit-

ical input features.

5. Conclusion

We demonstrate that solving the pruning objective does

not necessarily yield pathways that encode critical input

features. We propose finding critical pathways based on the

neurons contributions to the response, and show how these

sparse pathways can be leveraged for interpreting the neu-

ral response by proposing the “pathway gradient” method.

Our findings on critical pathways and pruning imply that we

may need to revisit the reliability of pruned networks, and

points to the direction of pruning via attribution. Moreover,

considering critical pathways can be of value to other inter-

pretation approaches, e.g. restricting the network to critical

pathways can serve as a possible remedy to the vulnerabil-

ity of perturbation-based attribution methods to adversarial

solutions.

Acknowledgments

The authors acknowledge the support of the Munich

Center for Machine Learning (MCML) and partial support

of Siemens Healthineers. C. Rupprecht is supported by In-

novate UK (project 71653) on behalf of UK Research and

Innovation (UKRI) and by the European Research Council

(ERC) IDIU-638009. A. Khakzar and S.T. Kim are corre-

sponding authors.

13535



References

[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Good-

fellow, Moritz Hardt, and Been Kim. Sanity checks for

saliency maps. In Advances in Neural Information Process-

ing Systems, 2018. 2, 7
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How to explain individual classification decisions. Journal

of Machine Learning Research, 11(Jun):1803–1831, 2010.

2, 6

[4] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and

Antonio Torralba. Network dissection: Quantifying inter-

pretability of deep visual representations. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 6541–6549, 2017. 2, 3, 4

[5] Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L.

Alexander, David W. Jacobs, and Peter N. Belhumeur. Bird-

snap: Large-scale fine-grained visual categorization of birds.

In Proc. Conf. Computer Vision and Pattern Recognition

(CVPR), June 2014. 2

[6] Peter Dayan and Laurence F Abbott. Theoretical neuro-

science: computational and mathematical modeling of neu-

ral systems. Computational Neuroscience Series, 2001. 1

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 1, 2, 5

[8] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal

Vincent. Visualizing higher-layer features of a deep network.

University of Montreal, 1341(3):1, 2009. 2, 3

[9] Ruth Fong, Mandela Patrick, and Andrea Vedaldi. Un-

derstanding deep networks via extremal perturbations and

smooth masks. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2950–2958, 2019. 2,

7

[10] Ruth C Fong and Andrea Vedaldi. Interpretable explanations

of black boxes by meaningful perturbation. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 3429–3437, 2017. 1, 2

[11] Amirata Ghorbani, Abubakar Abid, and James Zou. Inter-

pretation of neural networks is fragile. In Proceedings of

the AAAI Conference on Artificial Intelligence, volume 33,

pages 3681–3688, 2019. 6

[12] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep

sparse rectifier neural networks. In Journal of Machine

Learning Research, 2011. 1, 3

[13] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and

Yoshua Bengio. Deep learning, volume 1. MIT Press, 2016.

6

[14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. arXiv

preprint arXiv:1412.6572, 2014. 5

[15] Bryce Goodman and Seth Flaxman. European union regula-

tions on algorithmic decision-making and a right to explana-

tion. AI magazine, 38(3):50–57, 2017. 1

[16] Richard LT Hahnloser. On the piecewise analysis of

networks of linear threshold neurons. Neural Networks,

11(4):691–697, 1998. 1

[17] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network. In

Advances in neural information processing systems, pages

1135–1143, 2015. 3

[18] Babak Hassibi and David G Stork. Second order derivatives

for network pruning: Optimal brain surgeon. In Advances

in neural information processing systems, pages 164–171,

1993. 3

[19] Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A

fast learning algorithm for deep belief nets. Neural Compu-

tation, 18:1527–1554, 2006. 1

[20] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and

Been Kim. A benchmark for interpretability methods in deep

neural networks. In Advances in Neural Information Pro-

cessing Systems, pages 9737–9748, 2019. 2, 7, 8

[21] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan

Engstrom, Brandon Tran, and Aleksander Madry. Adversar-

ial examples are not bugs, they are features. In Advances

in Neural Information Processing Systems, pages 125–136,

2019. 2

[22] Cosimo Izzo, Aldo Lipani, Ramin Okhrati, and Francesca

Medda. A baseline for shapely values in mlps: from missing-

ness to neutrality. arXiv preprint arXiv:2006.04896, 2020. 7

[23] Ashkan Khakzar, Soroosh Baselizadeh, and Nassir Navab.

Rethinking positive aggregation and propagation of gradi-

ents in gradient-based saliency methods. arXiv preprint

arXiv:2012.00362, 2020. 2

[24] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai,

James Wexler, Fernanda Viegas, et al. Interpretability be-

yond feature attribution: Quantitative testing with concept

activation vectors (tcav). In International conference on ma-

chine learning, pages 2668–2677. PMLR, 2018. 1

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 2

[26] Yann LeCun, John S Denker, and Sara A Solla. Optimal

brain damage. In Advances in neural information processing

systems, pages 598–605, 1990. 3

[27] Guang He Lee, David Alvarez-Melis, and Tommi S.

Jaakkola. Towards robust, locally linear deep networks. In

7th International Conference on Learning Representations,

ICLR 2019, 2019. 6

[28] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS

Torr. Snip: Single-shot network pruning based on connec-

tion sensitivity. arXiv preprint arXiv:1810.02340, 2018. 3

[29] Scott M. Lundberg and Su In Lee. A unified approach to

interpreting model predictions. In Advances in Neural Infor-

mation Processing Systems, 2017. 2, 4, 7

[30] Aravindh Mahendran and Andrea Vedaldi. Understanding

deep image representations by inverting them. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 5188–5196, 2015. 2

13536



[31] Jean-Luc Marichal, Ivan Kojadinovic, and Katsushige Fu-

jimoto. Axiomatic characterizations of generalized values.

Discrete Applied Mathematics, 155(1):26–43, 2007. 7

[32] Saumitra Mishra, Bob L Sturm, and Simon Dixon. Local

interpretable model-agnostic explanations for music content

analysis. In ISMIR, pages 537–543, 2017. 6

[33] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,

and Jan Kautz. Pruning convolutional neural networks for re-

source efficient inference. arXiv preprint arXiv:1611.06440,

2016. 3
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