
Less is More: CLIPBERT for Video-and-Language Learning

via Sparse Sampling

Jie Lei*1, Linjie Li*2, Luowei Zhou2, Zhe Gan2, Tamara L. Berg1, Mohit Bansal1, Jingjing Liu2

1UNC Chapel Hill 2Microsoft Dynamics 365 AI Research

{jielei, tlberg, mbansal}@cs.unc.edu

{lindesy.li, luowei.zhou, zhe.gan, jingjl}@microsoft.com

Abstract

The canonical approach to video-and-language learning

(e.g., video question answering) dictates a neural model to

learn from offline-extracted dense video features from vi-

sion models and text features from language models. These

feature extractors are trained independently and usually

on tasks different from the target domains, rendering these

fixed features sub-optimal for downstream tasks. Moreover,

due to the high computational overload of dense video fea-

tures, it is often difficult (or infeasible) to plug feature ex-

tractors directly into existing approaches for easy finetun-

ing. To provide a remedy to this dilemma, we propose a

generic framework CLIPBERT that enables affordable end-

to-end learning for video-and-language tasks, by employ-

ing sparse sampling, where only a single or a few sparsely

sampled short clips from a video are used at each train-

ing step. Experiments on text-to-video retrieval and video

question answering on six datasets demonstrate that CLIP-

BERT outperforms (or is on par with) existing methods that

exploit full-length videos, suggesting that end-to-end learn-

ing with just a few sparsely sampled clips is often more

accurate than using densely extracted offline features from

full-length videos, proving the proverbial less-is-more prin-

ciple. Videos in the datasets are from considerably differ-

ent domains and lengths, ranging from 3-second generic-

domain GIF videos to 180-second YouTube human activity

videos, showing the generalization ability of our approach.

Comprehensive ablation studies and thorough analyses are

provided to dissect what factors lead to this success. Our

code is publicly available.1

1. Introduction

Humans communicate with each other in this interactive

and dynamic visual world via languages, signs, and ges-

tures. The ability to jointly understand both visual and

* Equal contribution.
1https://github.com/jayleicn/ClipBERT

Vision
encoder

Cross-modal
modeling

/

/

Vision
encoder

Cross-modal
modeling Prediction
S
pa
rs
e	
sa
m
pl
in
g

D
en
se
	s
am

pl
in
g

Clip	feature
Text	feature

Vi
de
o

Vi
de
o

Ours

Existing	mehods

Text Language
encoder

Language
encoderText

st
op

gr
ad
ie
nt

Cross-modal
modeling

Cross-modal
modeling

Prediction

Prediction

Video-level
prediction

Video-level
prediction

Figure 1: Comparison between popular video-and-language

learning paradigm (top) and CLIPBERT (bottom). In contrast to

most existing methods that utilize offline (stop gradient) extracted

dense video features and text features, CLIPBERT uses sparsely

sampled clips and raw text tokens for end-to-end modeling.

textual clues is an essential ability for intelligent agents

to interpret multimodal signals in the physical world. A

wide range of tasks based on real-life videos have been

designed to test such ability, including text-to-video re-

trieval [72, 26, 51], video captioning [51, 72, 79], video

question answering [71, 21, 31, 32], and video moment re-

trieval [1, 17, 33]. The de facto paradigm to tackle these

cross-modal tasks is to first extract dense video features

from pre-trained vision models [19, 3] and text features

from pre-trained language models [47, 10], then apply mul-

timodal fusion to wrangle together these fixed representa-

tions in a shared embedding space (Figure 1 (top)).

Existing approaches [21, 31, 80, 29] following this

paradigm have achieved strong success, yet suffer from two

main drawbacks: (i) Disconnection in tasks/domains: of-

fline feature extractors are often trained on tasks and do-

mains different from the target task, e.g., features learned

for action recognition on human activity videos [24] are in-

congruently applied to downstream video question answer-

ing on generic-domain GIF videos [21]. (ii) Disconnection

7331



in multimodal features: features from different modalities

are learned independent of each other, e.g., action recogni-

tion models [59, 63, 3] are typically trained on pure videos

without textual input, yet are applied to video+language

tasks. End-to-end task-specific finetuning offers a way to

mitigate these inherent disconnections. However, extract-

ing features from the full sequence of video frames, as in

most existing work, casts excessive demand on memory and

computation, rendering it difficult or even infeasible to di-

rectly plug feature extractors into a video+language learn-

ing framework for efficient end-to-end finetuning.

Motivated by this, we propose CLIPBERT, a generic

and efficient framework for end-to-end video-and-language

learning (Figure 1 (bottom)). Two aspects distinguish CLIP-

BERT from previous work. First, in contrast to densely

extracting video features (adopted by most existing meth-

ods), CLIPBERT sparsely samples only one single or a few

short clips from the full-length videos at each training step.

The hypothesis is that sparse clips already capture key vi-

sual and semantic information in the video, as consecutive

clips usually contain similar semantics from a continuous

scene. Thus, a handful of clips are sufficient for training, in-

stead of using the full video. Then, predictions from multi-

ple densely-sampled clips are aggregated to obtain the final

video-level prediction during inference, which is less com-

putational demanding. This sparse-training-then-dense-

inference strategy greatly reduces memory needs and com-

putations, allowing economical end-to-end learning from

raw video frame pixels and language tokens.

The second differentiating aspect concerns the initializa-

tion of model weights (i.e., transfer through pre-training).

In recent literature, image-text pre-training (e.g., using

COCO Captions [4] or Visual Genome Captions [27]) has

been applied to image-text tasks [58, 41, 5, 55, 20, 34, 78],

and video-text pre-training (e.g., using HowTo100M [43])

to video-related tasks [56, 80, 14, 35]. There has been no

study to cross-examine the effect of image-text pre-training

on video-text tasks. Intuitively, visual features learned

through pre-training from large-scale image datasets should

also help video understanding tasks that rely on visual clues

in static video frames. To investigate this, we use 2D (e.g.,

ResNet-50 [19]) instead of 3D architectures [59, 3, 70] as

our visual backbone for video encoding, allowing us to har-

ness the power of image-text pre-training for video-text un-

derstanding along with the advantages of low memory cost

and runtime efficiency. Empirically, we observe that the

knowledge learned in image-text pre-training indeed helps

video-text tasks; this simple strategy helps us achieve better

or comparable performance to previous state of the art on

text-to-video retrieval and video question answering tasks.

Our contributions are three-fold: (i) We propose

CLIPBERT, a new end-to-end learning framework for

video+language tasks. Experiments show that CLIP-

BERT achieves superior (or on par) performance than ex-

isting methods across diverse video-text tasks, where the

average video length ranges from a few seconds to three

minutes. (ii) Our work suggests “less is more”: the pro-

posed end-to-end training strategy with a single or a few

(less) sparsely sampled clips is often more accurate than

traditional approaches that employ densely extracted video

features. (iii) We demonstrate that image-text pre-training

benefits video-text tasks. We also provide comprehensive

ablation studies to reveal the key factors that lead to the suc-

cess of CLIPBERT, in hope of inspiring more future work.

2. Related Work

Video and Language Understanding. Popular video-and-

language tasks include text-to-video retrieval [72, 26, 51],

video captioning [72, 79, 26, 51, 37], video question an-

swering [71, 21, 31], and moment retrieval [1, 17, 33].

Standard approaches [21, 71, 16, 77, 31, 11, 29, 30] lever-

age offline extracted video and text features from ac-

tion recognition models [24, 63, 3, 70], image recogni-

tion models [9, 19], and language models [44, 47, 10, 39].

Aligned with the success of transformer-based [61] lan-

guage pre-training [10, 39, 73, 49, 28, 7] and image-text

pre-training [58, 41, 5, 34, 20, 78, 15, 6], video-text pre-

training [56, 80, 14, 35, 42, 43] has shown promising results

on video-and-language tasks. Beyond using fixed features

and same-domain data (i.e., video-text pre-training only for

video-text tasks), our work focuses on end-to-end training

and applying image-text pre-training for video-text tasks.

Action Recognition. Modern video action recognition ar-

chitectures are typically designed with deep 2D [53, 57, 19]

or 3D [59, 3, 70] convolutional networks. These back-

bones are often computation and memory heavy, making

it extremely difficult to directly process videos of consid-

erable length. To ease this difficulty, instead of training on

full-length videos, models are often trained with randomly

sampled short clips from the videos [52, 59, 48, 70, 64, 13,

12, 63]. At inference time, predictions from multiple uni-

formly sampled clips are aggregated together as the final

video-level prediction. In relation to these works, we adopt

a similar strategy to perform sparse training and dense in-

ference to reduce overhead on video processing, but focus

on video-and-language tasks with cross-modal modeling of

video and language, in contrast to pure video modeling.

3. CLIPBERT with Sparse Sampling

We propose CLIPBERT, a general framework that en-

ables end-to-end learning on video and language data, by

learning joint representations directly from video frame pix-

els and raw text tokens, instead of from offline-extracted

single-modality features. Figure 1 (bottom) gives an

overview of CLIPBERT framework. It adopts a sparse sam-

7332



pling strategy using only a single or a few sampled clips

at each training step, instead of full-length videos. Each

sampled clip is independently encoded with a vision back-

bone model, the visual features from which are then fed to a

cross-modal module that extracts relations between the clip

and its associated text representations. Independent predic-

tions from all the sampled clips are fused together (e.g.,

through mean-pooling) to derive a consensus at the video

level. A task-specific loss is calculated based on this con-

sensus to learn model parameters. During inference, CLIP-

BERT densely samples a sequence of clips from the video

and aggregates their predictions as the final prediction.

Most existing work [21, 31, 80, 29] models offline-

extracted dense video features and text features. We denote

a video-text pair as V (video) and S (text). V is further ex-

pressed as a list of N clips of equal duration [c1, c2, ..., cN ].
This standard paradigm can be formulated as:

p=H([FSG

v (c1),F
SG

v (c2), ...,F
SG

v (cN )],FSG

l (S)), (1)

where FSG
v and FSG

l
are vision and language encoder,

respectively. The superscript SG denotes Stop Gradient,

meaning that gradients cannot be back-propagated through

the two encoders. H is a cross-modal encoder and pre-

dictor, which models the relations between the encoded

video/language inputs and makes predictions. p is the

video-level prediction. A task-specific loss function Ltask

is then applied to calculate the loss value ltask based on this

prediction and its corresponding ground-truth q:

ltask = Ltask(p, q). (2)

Sparse Sampling for Training. Instead of using all the N

clips, CLIPBERT sparsely (and randomly) samples Ntrain

clips {cτi}
Ntrain

i=1
from V for training. Ntrain is typically

much smaller than N . We model a sampled clip cτi together

with text input S to produce a prediction pτi :

pτi = H(Fv(cτi),Fl(S)), (3)

where Fv and Fl are vision/language encoders. Different

from Equation 1 that uses offline vision/language encoders,

CLIPBERT is end-to-end trainable, allowing task-specific

loss to further finetune the encoders, learning better repre-

sentations. Independent predictions from all sampled clips

are aggregated to derive a consensus. The loss value ltask

is calculated based on this video-level consensus:

ltask = Ltask(G(pτ1 , pτ2 , ..., pτNtrain
), q), (4)

where G is the prediction/score aggregation function (e.g.,

mean-pooling). When Ntrain is larger than one, this formu-

lation can be regarded as a form of multiple instance learn-

ing (MIL) [67]. At inference, we uniformly sample Ntest

clips of the same duration as training clips, then aggregate

predictions from all Ntest clips to form our final prediction.

ClipText

Word	Embedding CNN

Spatial	Downsampling

Temporal	Fusion

2D	Position	Embedding

Type	Embedding

Position	Embedding

Transformer

Prediction		

people	playing	a
baseball	game

Video

Sparse	Sampling

Text	Features

Clip	Features

Figure 2: Overview of CLIPBERT architecture. For simplicity,

we only show an illustration of producing prediction for a single

sampled clip. When multiple clips are used, their predictions are

fused together as the final prediction.

CLIPBERT’s sparse training strategy can be interpreted

as a type of data augmentation: different subsets of clips

from the same video are used at different training steps,

which improves the model’s generalization ability. In this

sense, it is analogous to random cropping [53, 19] com-

monly used in image classification tasks. It also takes in-

spiration from action recognition methods [52, 59, 63, 13],

where a video classifier is trained on sampled clips.

Model Architecture. Figure 2 gives an overview of CLIP-

BERT architecture. For the vision encoder Fv , we use a

2D CNN architecture ResNet-50 [19] instead of 3D archi-

tectures (such as C3D [59] or I3D [3]), because 2D models

typically consume less memory and run faster. Besides, 2D

CNNs have proved to work reasonably well on video under-

standing tasks such as action recognition [63, 48]. Specif-

ically, we take the first 5 Conv blocks of ResNet-50 [19]

and add an extra Conv layer and a 2×2 max-pooling layer

to reduce its output feature depth and spatial size, follow-

ing Pixel-BERT [20]. For each sampled clip, we uniformly

sample T frames and obtain T feature maps. A temporal

fusion layer M (e.g., mean-pooling) is applied to aggregate

the frame-level feature maps at the temporal axis to obtain

a single clip-level feature map. We then add a row-wise

and a column-wise position embedding to each feature vec-

tor based on their 2D position. These embeddings are the

same trainable position embeddings as in BERT [10]. Col-

lectively, these two position embeddings are indicative of

2D spatial locations of the features, which can be viewed

as a 2D position embedding. The resulting feature map is

flattened into an embedding sequence to represent the clip.

7333



We use a trainable word embedding layer as our lan-

guage encoder Fl to encode language tokens and add train-

able position embeddings to encode positional information

of the tokens. Next, we add different type embeddings [10]

to both clip and text embeddings to indicate their source

type. These two sequences are then concatenated as inputs

to a 12-layer transformer [61, 10] for cross-modal fusion.

Special tokens [CLS] and [SEP] are added in this pro-

cess following [10]. Given a downstream task, we add a

task-specific prediction head with the last-layer [CLS] rep-

resentation as input (e.g., using a two-layer MLP with soft-

max to produce scores for text-to-video retrieval).

Weight Initialization and Pre-training. We initialize the

ResNet-50 layers with weights from grid-feat [22, 50]. It

is trained on Visual Genome [27] for object detection and

attribute classification, and produces effective grid features

for image VQA tasks [2, 18]. Input frames are resized to

have a maximum longer side of L while keeping the as-

pect ratios, and the shorter side is zero-padded to be L as

well [45]. We initialize the transformer and word embed-

ding layers from BERT-base [10], pre-trained on BookCor-

pus [81] and Wikipedia. These weights are trained sepa-

rately for their individual single-modality tasks, thus simply

combining them together in a single framework for down-

stream task training may result in sub-optimal performance.

Although pre-training the whole model end-to-end with

large-scale video-text datasets such as HowTo100M [43]

are appealing, we are restricted by the enormous compu-

tation cost.2 Luckily, as we use 2D CNN as our vision en-

coder, CLIPBERT is able to directly take image-text pairs

as inputs for training. Thus, we leverage large-scale image-

text datasets (COCO Captions [4] and Visual Genome Cap-

tions [27]) to perform cross-modal pre-training [58, 41, 20].

Specifically, we use masked language modeling [10] and

image-text matching [58, 41] objectives. By default, we

finetune our model from this pre-trained weights for down-

stream video-text tasks. The impact of different weight ini-

tialization strategies is examined in Section 4.3.

Implementation Details. We perform image-text pre-

training on COCO Captions [4] and Visual Genome Cap-

tions [27]. These two datasets contain a total of 5.6M train-

ing image-text pairs on 151K images. This is the same data

used in UNITER’s [5] in-domain pre-training. We use input

image size L=768, and the resulting feature map from the

vision encoder contains 144 pixels. To improve generaliza-

tion and reduce computation cost, during pre-training, we

follow Pixel-BERT [20] to use pixel random sampling that

samples 100 pixels from the encoded feature map as the in-

put to the transformer layers. Note that we only apply pixel

random sampling for pre-training, and always use the full

2[42] reports that pre-training I3D [3] with offline extracted text fea-

tures on HowTo100M requires ∼3 days with 64 Cloud TPUs v3.

feature map for downstream tasks to avoid misalignment

in training and inference [20]. We use WordPiece embed-

dings [68] and keep at most 20 tokens from the caption. We

then randomly mask 15% of the tokens for masked language

modeling. For each image-caption pair, with a probability

of 0.5, we replace the ground-truth caption with a randomly

sampled caption from another image to form a negative pair

for image-text matching. We use AadmW [40] to optimize

end-to-end model training, with an initial learning rate of

5e-5, β1=0.9, β2=0.98, and use learning rate warmup over

the first 10% training steps followed by linear decay to 0.

Our model is implemented in PyTorch [46] and transform-

ers [66]. It is trained for 40 epochs with mixed precision,

on 8 NVIDIA V100 GPUs with a batch size of 32 per GPU.

The whole training process takes 4 days to complete.

For downstream finetuning, we use the same training and

optimizer configurations except that the default input image

size is set to 448 (due to the typically lower resolution of

videos compared to images). Since downstream datasets

vary in scale and domain, we use task-specific learning rates

and training epochs based on validation performance.

4. Experiments

In this section, we evaluate CLIPBERT on two popular

video-and-language tasks, text-to-video retrieval and video

question answering, across six different datasets. We also

provide extensive ablation studies to analyze the key factors

that contribute to CLIPBERT’s success.

4.1. Downstream Tasks

Text-to-Video Retrieval. (i) MSRVTT [72] contains

10K YouTube videos with 200K descriptions. We fol-

low [74, 43], using 7k train+val videos for training and re-

port results on the 1K test set [74]. We also create a lo-

cal val set by sampling 1K video-caption pairs from unused

test videos for our ablation study. (ii) DiDeMo [1] con-

tains 10K Flickr videos annotated with 40K sentences. (iii)
ActivityNet Captions [26] contains 20K YouTube videos

annotated with 100K sentences. The training set contains

10K videos, and we use val1 set with 4.9K videos to re-

port results. For MSRVTT, we evaluate standard sentence-

to-video retrieval. For DiDeMo and ActivityNet Captions,

we follow [77, 38] to evaluate paragraph-to-video retrieval,

where all sentence descriptions for a video are concatenated

to form a paragraph for retrieval. We use average recall at K

(R@K) and median rank (MdR) to measure performance.

Video Question Answering. (i) TGIF-QA [21] contains

165K QA pairs on 72K GIF videos. We experiment with 3

TGIF-QA tasks: Repeating Action and State Transition for

multiple-choice QA, and Frame QA for open-ended QA.

We leave the Count task as future work as it requires di-

rectly modeling full-length videos. (ii) MSRVTT-QA [71]

7334



3.1 14.8 29.3 180

TGIF-QA MSRVTT DiDeMo ActivityNet Captions

Figure 3: Average video length in different datasets.

L
MSRVTT Retrieval MSRVTT-

R1 R5 R10 MdR QA Acc.

224 6.8 24.4 35.8 20.0 35.78

448 10.2 28.6 40.5 17.0 35.73

768 11.0 27.8 40.9 16.0 35.73

1000 10.0 28.4 39.4 18.0 35.19

Table 1: Impact of input image size L.

is created based on videos and captions in MSRVTT, con-

taining 10K videos and 243K open-ended questions. (iii)
MSRVTT multiple-choice test [74] is a multiple-choice

task with videos as questions, and captions as answers.

Each video contains 5 captions, with only one positive

match. For all the QA tasks, we use standard train/val/test

splits and report accuracy to measure performance.

Figure 3 shows a comparison of average video length of

evaluated datasets. Videos across datasets demonstrate con-

siderable difference in domains and lengths, ranging from

3-second generic-domain GIF videos in TGIF-QA to 180-

second human activity videos in ActivityNet Captions.

4.2. Analysis of Sparse Sampling

We conduct comprehensive ablation studies concerning

various aspects of CLIPBERT’s design in this section and

Section 4.3. If not otherwise stated, we randomly sample a

single frame (Ntrain=1 and T=1) from full-length videos

for training, and use the middle frame (Ntest=1) for infer-

ence, with input image size L=448. All ablation results are

on MSRVTT retrieval local val and MSRVTT-QA val sets.

Do we need larger input image size? We compare models

with different input image sizes L ∈ {224, 448, 768, 1000},

results shown in Table 1. Compared to the model with

L=224, larger input resolution improves performance on

the retrieval task, while maintaining a similar performance

on the QA task. The best performance is achieved at around

L=448. Further increasing the resolution does not pro-

vide significant performance boost. [22] shows that increas-

ing input image size from 448 to 1333 always improves

image VQA [2] performance with no sign of saturation,

while we observe the performance converges at around 448

for MSRVTT retrieval and QA. This is potentially because

VQA images are typically of higher raw resolution than

MSRVTT videos (we are only able to obtain videos at a

maximum height of 240 pixels). We expect higher resolu-

tion videos could further improve model performance.

Do we need densely sampled frames? A common practice

for video understanding and video+language understanding

is to model densely sampled frames from the original video

(e.g., [3, 70] sample frames at 25 frames per second). To

M T
MSRVTT Retrieval MSRVTT-

R1 R5 R10 MdR QA Acc.

- 1 10.2 28.6 40.5 17.0 35.73

Mean Pooling

2 11.3 31.7 44.9 14.0 36.02

4 10.8 30.0 43.6 14.0 35.83

8 10.6 32.5 45.0 13.0 35.69

16 11.6 33.9 45.8 13.0 36.05

Conv3D
2 8.7 27.3 40.2 17.0 34.85

16 10.1 28.9 41.7 16.0 35.03

Conv(2+1)D
2 7.3 24.1 35.6 22.0 34.13

16 9.9 27.3 39.6 17.0 33.92

Table 2: Impact of #frames (T ) and temporal fusion function

(M). We use a 1-second clip for all experiments.

2 4 8 16
#clips at inference (Ntest)

40

43

46

49

52

M
S

R
V

TT
 re

tri
ev

al
 R

10

One frame per clip
Two frames per clip

2 4 8 16
#clips at inference (Ntest)

35.6

35.8

36.0

36.2

36.4

M
S

R
V

TT
-Q

A
 A

cc
ur

ac
y

Figure 4: Impact of #inference clips (Ntest).

understand the impact of using densely sampled frames,

we conduct a set of controlled experiments. Specifically,

we randomly sample a fixed-length 1-second clip from the

video, then evenly sample T={1, 2, 4, 8, 16} frames within

this clip for training. For inference, we use the middle clip

of the video. When multiple frames are used (i.e., T>1),

we use mean pooling for temporal fusion.

We also experiment with variants using additional 3D

convolutions before mean pooling: (i) Conv3D: a stan-

dard 3D convolution layer with kernel size 3, stride 1; (ii)

Conv(2+1)D: a spatial and temporal separable 3D convolu-

tion [60, 70]. Adding 3D convolutions to 2D convolutions

essentially leads to a design similar to Top-Heavy S3D ar-

chitecture [70], which shows better performance than full

3D convolutions on video action recognition and runs faster.

Results are shown in Table 2. Overall, models that use

3D convolutions perform worse than models that adopt a

simple mean pooling. For mean pooling, we observe that

using two frames provides a notable improvement over us-

ing a single frame. However, models that use more than

two frames perform similarly compared to the one using

two frames, suggesting that two frames already represent

enough local temporal information for the tasks.

Do more clips at inference help? At inference, we aggre-

gate prediction scores from multiple densely sampled clips

as the final score. To show how this strategy affects perfor-

mance, we evenly sample Ntest ∈ {1, 2, 4, 8, 16} clips from

a video and average their individual predictions at inference.

For this experiment, we provide two models trained with

different numbers of training frames per clip: one with a

single frame and the other with two frames. Both models

7335



G Ntrain

MSRVTT Retrieval MSRVTT-

R1 R5 R10 MdR QA Acc.

- 1 12.7 34.5 48.8 11.0 36.24

Mean Pooling

2 13.3 37.1 50.6 10.0 35.94

4 14.0 38.6 51.6 10.0 35.40

8 13.4 36.4 49.7 11.0 35.76

16 15.2 39.4 53.1 9.0 35.33

Max Pooling
2 8.5 28.7 42.2 14.0 36.41

16 12.5 33.1 46.8 12.0 36.25

LogSumExp
2 15.5 38.4 52.6 9.0 36.59

16 17.4 41.5 55.5 8.0 36.16

Table 3: Impact of #training clips (Ntrain) and score aggrega-

tion function (G). All models use Ntest=16 clips for inference.

Sampling Method Ntrain

MSRVTT Retrieval MSRVTT-

R1 R5 R10 MdR QA Acc.

Dense Uniform 16 15.5 39.6 55.0 9.0 35.88

Sparse Random

1 12.7 34.5 48.8 11.0 36.24

2 15.5 38.4 52.6 9.0 36.59

4 15.7 41.9 55.3 8.0 36.67

Table 4: Sparse random sampling vs. dense uniform sampling.

All models use Ntest=16 clips for inference.

use a single clip for training. Results are shown in Figure 4.

Adding more clips generally improves performance, espe-

cially the first few additions, but after a certain point perfor-

mance saturates. For example, in Figure 4 (left), MSRVTT

retrieval performance increases substantially as we use two

and four clips, compared to using a single clip; then the per-

formance gain gradually becomes marginal.

Do more clips in training help? We randomly sample

Ntrain clips and aggregate scores from the clips with aggre-

gation function G as the final score to calculate the training

loss. When multiple clips are used, information from these

samples is aggregated through multiple instance learning

to maximize the utility of these clips. To understand how

this strategy affects model performance, we evaluate model

variants that use Ntrain ∈ {1, 2, 4, 8, 16} at training. We

also consider 3 different commonly used score aggregation

functions for G: mean pooling, max pooling, and LogSum-

Exp [42]. In mean pooling and max pooling, the cross-clip

pooling is performed over logits, followed by a softmax op-

erator. In LogSumExp, logits from each clip are first fed

through an element-wise exponential operator, followed by

a cross-clip mean pooling. The aggregated output is further

normalized by its own sum to make it eligible as a proba-

bility distribution. For simplicity, we always use the same

aggregation function for training and inference. For a fair

comparison, all models use a single frame per clip for train-

ing and 16 clips for inference, i.e., T=1 and Ntest=16.

Results are shown in Table 3. In general, adding more

clips helps, and the second added clip gives the most per-

formance gain. For example, for models with LogSum-

Exp, Ntrain=2 improves retrieval R1 score of Ntrain=1
by 2.8%, while Ntrain=16 improves only 1.9% upon

Ntrain=2, even though it adds much more clips. As for

2 4 8 16
#clips at training (Ntrain)

0

100

200

300

400

M
ax

. a
llo

w
ed

 b
ac

th
 s

iz
e

(a)

2 4 8 16
#clips at training (Ntrain)

0

0.25

0.50

0.75

1.00

S
in

gl
e 

pa
ss

 ti
m

e 
(s

)

(b)

2 4 8 16
#frames per clip at training (T)

0

100

200

300

400

M
ax

. a
llo

w
ed

 b
ac

th
 s

iz
e

(c)

2 4 8 16
#frames per clip at training (T)

0

0.25

0.50

0.75

1.00

S
in

gl
e 

pa
ss

 ti
m

e 
(s

)

(d)

0

15

30

45

60

M
S

R
V

TT
 re

tri
ev

al
 R

10

0

15

30

45

60

M
S

R
V

TT
 re

tri
ev

al
 R

10

Figure 5: Memory and computation cost comparison w.r.t. dif-

ferent numbers of clips (Ntrain) or frames (T ) at training. (a):

Maximum allowed batch size with fixed T=1. (b): Time cost for

a single forward and backward pass with fixed T=1, batch size 8.

(c): Maximum allowed batch size with fixed Ntrain=1. (d): Time

cost for a single forward and backward pass with fixed Ntrain=1,

batch size 8. All experiments are conducted on a single NVIDIA

V100 GPU with 32GB memory. MSRVTT retrieval performance

is also added in (b, d) for reference. Best viewed in color.

score aggregation function G, LogSumExp works the best.

Sparse Random Sampling vs. Dense Uniform Sampling.

At each training step, CLIPBERT randomly samples only

a single or a few short clips from a full-length video. In-

tuitively, this sparse random sampling strategy can be in-

terpreted as a type of data augmentation where different

subsets of clips for a video are used to calculate the loss

at different training steps. To show the effectiveness of

this approach, we compare CLIPBERT with a variant that

uses uniformly sampled dense clips. Specifically, we use

the same CLIPBERT architecture as before but always uses

16 uniformly sampled clips for training. Table 4 shows the

comparison. Sparse random sampling with only 4 clips out-

performs dense uniformly sampling with 16 clips across all

metrics in both retrieval and QA tasks. Meanwhile, using 4

clips is much more memory and computation efficient than

using 16 clips, as we show in the next paragraph. In ad-

dition to these two sampling approaches, it is also possible

to choose clips using content-based methods such as [69].

However, this requires an extra non-trivial selection step,

and may also remove some of the data augmentation effect

brought by random sampling.

Memory and Computation Cost. Figure 5 shows a com-

parison of memory and computation cost w.r.t. different

numbers of clips (Ntrain) or frames (T ) at training. We

observe that using more clips or more frames at train-

ing considerably increases memory demand and computa-

tional cost. For example, in Figure 5 (a), we see that the

maximum allowed batch size for a single NVIDIA V100

7336



Weight Initialization MSRVTT Retrieval MSRVTT-

CNN transformer R1 R5 R10 MdR QA Acc.

random random 0.3 0.4 0.9 506.0 28.05

random BERTBASE 0.0 0.2 0.7 505.0 31.72

TSN, K700 BERTBASE 5.7 22.1 33.1 23.0 35.40

ImageNet BERTBASE 7.2 23.3 35.6 21.0 35.01

grid-feat BERTBASE 7.4 21.0 30.7 26.0 35.27

image-text pre-training 10.2 28.6 40.5 17.0 35.73

Table 5: Impact of weight initialization strategy.

GPU is 190 when Ntrain=2, compared to that of 16 when

Ntrain=16. Meanwhile, in Figure 5 (b), we see that the

time cost increases almost linearly with Ntrain, while the

performance improvement on MSRVTT retrieval is less sig-

nificant. These comparisons demonstrate the efficiency and

effectiveness of the proposed sparse training strategy.

4.3. Analysis of Pre­training/End­to­end Training

Impact of Image-text Pre-training. Our model is ini-

tialized with image-text pre-training on COCO and Visual

Genome Captions, to obtain better-aligned visual and tex-

tual representations. To validate the effectiveness of using

image-text pre-training for weight initialization, we evalu-

ate variants that use other initialization strategies. For CNN,

we use weights from random initialization, image classifi-

cation model pre-trained on ImageNet [9], frame-wise ac-

tion recognition model TSN [63, 8] pre-trained on Kinetics-

700 [54, 3], or detection model grid-feat [22] pre-trained on

Visual Genome [27]. For transformer and word embedding

layers, we use weights from random initialization or pre-

trained BERTBASE model [10]. For random initialization, we

use the default setup in PyTorch [46] and Transformer [65]

libraries for CNN and transformer layers, respectively. Re-

sults are summarized in Table 5. We notice that randomly

initializing CNN leads to massive performance degradation

or even training failure, we hypothesize that it is mostly

because of the difficulty of training large models on rela-

tively small datasets (e.g., MSRVTT retrieval train split: 7K

videos). The best performance is achieved using image-text

pre-trained weights, clearly indicating the benefit of utiliz-

ing image-text pre-training for video-text tasks.

Impact of End-to-End Training. The standard paradigm

for video-and-language understanding is to train models

with offline extracted features, in which the task objective

does not affect the video and text encoding process. In this

work, we train our model in an end-to-end manner, allowing

the model to finetune feature representations by leveraging

task supervision. In Table 6, we compare our model with

variants that freeze portions of the parameters. Overall, the

best performance is achieved by our model, showing the im-

portance of end-to-end training. Note that all the models in

Table 6 are finetuned from our end-to-end image-text pre-

trained model, which partly resolves the multimodal feature

disconnection issue in Section 1. Thus, we expect smaller

Parameters Trainable? MSRVTT Retrieval MSRVTT-

Fv Fl R1 R5 R10 MdR QA Acc.

✗ ✗ 8.0 27.2 38.9 17.0 35.78

✗ ✓ 9.0 27.5 39.4 18.0 35.50

✓ ✓ 10.2 28.6 40.5 17.0 35.73

Table 6: Impact of end-to-end training.

improvement from further end-to-end finetuning.

Main Conclusions from the analyses in Section 4.2 and

Section 4.3 are summarized as follows: (i) Larger input im-

age size improves model performance, but the gain dimin-

ishes when image size is larger than 448; (ii) Sparsely sam-

ple 2 frames from each clip performs on par with densely

sample 16 frames, showing that just one or two frames are

sufficient for effective video-and-language training; mean-

pooling is more effective than 3D Conv when fusing infor-

mation from different frames; (iii) More clips at inference

helps improve model performance; prediction aggregation

strategy across clips affects final performance; (iv) Sparse

(random) sampling is more effective than dense uniform

sampling while being more memory and computation effi-

cient; (v) Image-text pre-training benefits video-text tasks;

and (vi) End-to-end training improves model performance.

4.4. Comparison to State­of­the­art

We compare CLIPBERT with state-of-the-art methods

on text-to-video retrieval and video question answering. We

denote models using different sampling methods as CLIP-

BERT Ntrain×T (randomly sample Ntrain 1-sec clips for

training, each contains T uniformly sampled frames of size

L=448). We use LogSumExp to aggregate scores from

multiple clips. At inference, if not otherwise stated, we ag-

gregate scores from Ntest=16 uniformly sampled clips.

Text-to-Video Retrieval. Table 7 summarizes results on

text-to-video retrieval. In Table 7a, CLIPBERT achieves

significant performance gain over existing methods on

MSRVTT retrieval, including HT [43], ActBERT [80], and

HERO [35], which are pre-trained on 136M clip-caption

pairs from HowTo100M [43]. Under a fair compari-

son, CLIPBERT 4×1 outperforms HERO [35] by 3.0%

on R@1. Note that HERO uses SlowFast [13] features

extracted from full-length videos at a very dense frame

rate of 21 FPS (i.e., on average 310 frames per video

for MSRVTT), while CLIPBERT 4×1 uses only 4 ran-

domly sampled frames. When more frames are used, CLIP-

BERT 8×2 achieves even higher performance, surpass-

ing HERO by 5.2%. Compared to the HERO ASR model

that uses extra input from Automatic Speech Recognition

(ASR), CLIPBERT still obtains 1.5% higher R1 score.

Similarly, on DiDeMo and ActivityNet Captions

paragraph-to-video retrieval tasks (Table 7b and Table 7c),

we notice our best CLIPBERT models outputform CE [38]

by 4.3% and 3.1% on R1, respectively, despite CE’s use of

7337



Method R1 R5 R10 MdR

HERO [35] ASR, PT 20.5 47.6 60.9 -

JSFusion [74] 10.2 31.2 43.2 13.0

HT [43] PT 14.9 40.2 52.8 9.0

ActBERT [80] PT 16.3 42.8 56.9 10.0

HERO [35] PT 16.8 43.4 57.7 -

CLIPBERT 4×1 19.8 45.1 57.5 7.0

CLIPBERT 8×2 22.0 46.8 59.9 6.0

(a) MSRVTT 1K test set.

Method R1 R5 R10 MdR

CE [38] 16.1 41.1 - 8.3

S2VT [62] 11.9 33.6 - 13.0

FSE [77] 13.9 36.0 - 11.0

CLIPBERT 4×1 19.9 44.5 56.7 7.0

CLIPBERT 8×2 20.4 48.0 60.8 6.0

(b) DiDeMo test set.

Method R1 R5 R10 MdR

CE [38] 18.2 47.7 - 6.0

MMT [14] 22.7 54.2 93.2 5.0

MMT [14] PT 28.7 61.4 94.5 3.3

Dense [26] 14.0 32.0 - 34.0

FSE [77] 18.2 44.8 - 7.0

HSE [77] 20.5 49.3 - -

CLIPBERT 4×2∗ 20.9 48.6 62.8 6.0

CLIPBERT 4×2∗ (Ntest=20) 21.3 49.0 63.5 6.0

(c) ActivityNet Captions val1 set.

Table 7: Comparison with state-of-the-art methods on text-to-video retrieval. CLIPBERT models with different training input sam-

pling methods are denoted by Ntrain×T . We use Ntest=16 if not otherwise stated. We gray out models that used features other than

appearance and motion for a fair comparison, e.g., CE used appearance, scene, motion, face, audio, OCR, ASR features from 11 different

models. PT indicates the model is pre-trained on HowTo100M. * denotes models use 2-second clips instead of the default 1-second clips.

Method Action Transition FrameQA

ST-VQA [21] 60.8 67.1 49.3

Co-Memory [16] 68.2 74.3 51.5

PSAC [36] 70.4 76.9 55.7

Heterogeneous Memory [11] 73.9 77.8 53.8

HCRN [29] 75.0 81.4 55.9

QueST [23] 75.9 81.0 59.7

CLIPBERT 1×1 (Ntest=1) 82.9 87.5 59.4

CLIPBERT 1×1 82.8 87.8 60.3

(a) TGIF-QA test set.

Method Accuracy

ST-VQA [21] (by [11]) 30.9

Co-Memory [16] (by [11]) 32.0

AMU [71] 32.5

Heterogeneous Memory [11] 33.0

HCRN [29] 35.6

CLIPBERT 4×1 37.0

CLIPBERT 8×2 37.4

(b) MSRVTT-QA test set.

Method Accuracy

SNUVL [75] (by [74]) 65.4

ST-VQA [21] (by [74]) 66.1

CT-SAN [76] (by [74]) 66.4

MLB [25] (by [74]) 76.1

JSFusion [74] 83.4

ActBERT [80] PT 85.7

CLIPBERT 4×1 87.9

CLIPBERT 8×2 88.2

(c) MSRVTT multiple-choice test.

Table 8: Comparison with state-of-the-art methods on video question answering.

appearance, scene, motion, face, audio, OCR, ASR features

densely extracted from 11 different models. ActivityNet

Caption videos are on average 180-second long. In Table 7c

we show CLIPBERT performs competitively with existing

methods that model long-range relations in this dataset. Es-

pecially, CLIPBERT obtains 0.8% higher R1 than HSE [77]

and is competitive compared to MMT [14] that uses extra

audio features3, even though CLIPBERT 4×2∗ (Ntest=20)

samples only 8-second clips from 180-second videos at

each training step, and uses only 40-second content for in-

ference. We expect CLIPBERT’s performance to be further

improved by sampling more clips during training and infer-

ence. Meanwhile, we also encourage future work to explore

combining extra input signals, such as audio, into the CLIP-

BERT framework for better performance.

Video Question Answering. Table 8 shows results on

video question answering. Across all three tasks, CLIP-

BERT achieves significant performance gain. In Ta-

ble 8a, CLIPBERT 1×1 outperforms prior state-of-the-art

QueST [23] by 6.9%, 6.8%, and 0.6% on TGIF-QA Ac-

tion, Transition, and FrameQA tasks, respectively. This

is especially surprising considering CLIPBERT 1×1 uses

only a single randomly sampled frame from the videos at

each training step, while QueST uses 10 uniformly sampled

frames. Moreover, when using only a single frame (the mid-

dle frames of the videos) for inference, CLIPBERT 1×1

(Ntest=1) already far outperforms QueST on Action and

3[14] shows that adding audio features greatly improves performance.

Transition, and is on par with QueST on FrameQA. In Ta-

ble 8b, CLIPBERT 4×1 outperforms HCRN [29] by 1.4%

on MSRVTT-QA. Note that HCRN adopts a sophisticated

hierarchical relation modeling network over the entire video

of 24 clips at training, while we use only four randomly

sampled frames. Using more frames further increases this

performance gap to 1.8%. Table 8c shows CLIPBERT 8×2

improves ActBERT [80] model pre-trained on HowTo100M

by 2.5%, on MSRVTT multiple choice test task.

5. Conclusion

We present CLIPBERT, a generic framework for end-to-

end video-and-language learning, which adopts sparse sam-

pling to use only a few sampled short clips from the videos

at each training step. Experiments across diverse tasks show

that CLIPBERT outperforms (or is on par with) state-of-

the-art methods with densely sampled offline features, sug-

gesting that the “less is more” principle is highly effective in

practice. Comprehensive ablation studies reveal several key

factors that lead to this success, including sparse sampling,

end-to-end training, and image-text pre-training.

Acknowledgements: This research was partially done

when Jie was an intern with Microsoft. He was later sup-

ported at UNC by NSF Award #1562098, DARPA KAIROS

Grant #FA8750-19-2-1004, ARO-YIP Award #W911NF-

18-1-0336, and Microsoft Investigator Fellowship. The

views contained in this article are those of the authors and

not of the funding agency.

7338



References

[1] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef

Sivic, Trevor Darrell, and Bryan Russell. Localizing mo-

ments in video with natural language. In ICCV, 2017.

[2] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret

Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh.

Vqa: Visual question answering. In ICCV, 2015.

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In CVPR,

2017.

[4] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedan-

tam, Saurabh Gupta, Piotr Dollár, and C Lawrence Zitnick.

Microsoft coco captions: Data collection and evaluation

server. arXiv, 2015.

[5] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,

Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter:

Learning universal image-text representations. In ECCV,

2020.

[6] Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Unifying

vision-and-language tasks via text generation. arXiv, 2021.

[7] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christo-

pher D Manning. Electra: Pre-training text encoders as dis-

criminators rather than generators. In ICLR, 2020.

[8] MMAction2 Contributors. Openmmlab’s next generation

video understanding toolbox and benchmark. https://

github.com/open-mmlab/mmaction2, 2020.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, 2009.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional trans-

formers for language understanding. In NAACL, 2019.

[11] Chenyou Fan, Xiaofan Zhang, Shu Zhang, Wensheng Wang,

Chi Zhang, and Heng Huang. Heterogeneous memory en-

hanced multimodal attention model for video question an-

swering. In CVPR, 2019.

[12] Christoph Feichtenhofer. X3d: Expanding architectures for

efficient video recognition. In CVPR, 2020.

[13] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and

Kaiming He. Slowfast networks for video recognition. In

ICCV, 2019.

[14] Valentin Gabeur, Chen Sun, Karteek Alahari, and Cordelia

Schmid. Multi-modal transformer for video retrieval. In

ECCV, 2020.

[15] Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng,

and Jingjing Liu. Large-scale adversarial training for vision-

and-language representation learning. In NeurIPS, 2020.

[16] Jiyang Gao, Runzhou Ge, Kan Chen, and Ram Nevatia.

Motion-appearance co-memory networks for video question

answering. In CVPR, 2018.

[17] Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Nevatia.

Tall: Temporal activity localization via language query. In

ICCV, 2017.

[18] Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi

Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P Bigham.

Vizwiz grand challenge: Answering visual questions from

blind people. In CVPR, 2018.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[20] Zhicheng Huang, Zhaoyang Zeng, Bei Liu, Dongmei Fu, and

Jianlong Fu. Pixel-bert: Aligning image pixels with text by

deep multi-modal transformers. arXiv, 2020.

[21] Yunseok Jang, Yale Song, Youngjae Yu, Youngjin Kim, and

Gunhee Kim. Tgif-qa: Toward spatio-temporal reasoning in

visual question answering. In CVPR, 2017.

[22] Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-

Miller, and Xinlei Chen. In defense of grid features for visual

question answering. In CVPR, 2020.

[23] Jianwen Jiang, Ziqiang Chen, Haojie Lin, Xibin Zhao, and

Yue Gao. Divide and conquer: Question-guided spatio-

temporal contextual attention for video question answering.

In AAAI, 2020.

[24] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,

Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,

Tim Green, Trevor Back, Paul Natsev, et al. The kinetics

human action video dataset. arXiv, 2017.

[25] Jin-Hwa Kim, Kyoung-Woon On, Woosang Lim, Jeonghee

Kim, Jung-Woo Ha, and Byoung-Tak Zhang. Hadamard

product for low-rank bilinear pooling. In ICLR, 2016.

[26] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and

Juan Carlos Niebles. Dense-captioning events in videos. In

ICCV, 2017.

[27] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,

Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-

tidis, Li-Jia Li, David A Shamma, et al. Visual genome:

Connecting language and vision using crowdsourced dense

image annotations. IJCV, 2017.

[28] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin

Gimpel, Piyush Sharma, and Radu Soricut. Albert: A lite

bert for self-supervised learning of language representations.

In ICLR, 2020.

[29] Thao Minh Le, Vuong Le, Svetha Venkatesh, and Truyen

Tran. Hierarchical conditional relation networks for video

question answering. In CVPR, 2020.

[30] Jie Lei, Liwei Wang, Yelong Shen, Dong Yu, Tamara L

Berg, and Mohit Bansal. Mart: Memory-augmented recur-

rent transformer for coherent video paragraph captioning. In

ACL, 2020.

[31] Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg.

Tvqa: Localized, compositional video question answering.

In EMNLP, 2018.

[32] Jie Lei, Licheng Yu, Tamara L Berg, and Mohit Bansal.

Tvqa+: Spatio-temporal grounding for video question an-

swering. In ACL, 2020.

[33] Jie Lei, Licheng Yu, Tamara L Berg, and Mohit Bansal. Tvr:

A large-scale dataset for video-subtitle moment retrieval. In

ECCV, 2020.

[34] Gen Li, Nan Duan, Yuejian Fang, Ming Gong, Daxin Jiang,

and Ming Zhou. Unicoder-vl: A universal encoder for vision

and language by cross-modal pre-training. In AAAI, 2020.

[35] Linjie Li, Yen-Chun Chen, Yu Cheng, Zhe Gan, Licheng Yu,

and Jingjing Liu. Hero: Hierarchical encoder for video+ lan-

guage omni-representation pre-training. In EMNLP, 2020.

7339



[36] Xiangpeng Li, Jingkuan Song, Lianli Gao, Xianglong Liu,

Wenbing Huang, Xiangnan He, and Chuang Gan. Beyond

rnns: Positional self-attention with co-attention for video

question answering. In AAAI, 2019.

[37] Yuncheng Li, Yale Song, Liangliang Cao, Joel Tetreault,

Larry Goldberg, Alejandro Jaimes, and Jiebo Luo. Tgif: A

new dataset and benchmark on animated gif description. In

CVPR, 2016.

[38] Yang Liu, Samuel Albanie, Arsha Nagrani, and Andrew Zis-

serman. Use what you have: Video retrieval using represen-

tations from collaborative experts. In BMVC, 2020.

[39] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar

Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-

moyer, and Veselin Stoyanov. Roberta: A robustly optimized

bert pretraining approach. arXiv, 2019.

[40] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. In ICLR, 2019.

[41] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert:

Pretraining task-agnostic visiolinguistic representations for

vision-and-language tasks. In NeurIPS, 2019.

[42] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan

Laptev, Josef Sivic, and Andrew Zisserman. End-to-end

learning of visual representations from uncurated instruc-

tional videos. In CVPR, 2020.

[43] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,

Makarand Tapaswi, Ivan Laptev, and Josef Sivic.

Howto100m: Learning a text-video embedding by watching

hundred million narrated video clips. In ICCV, 2019.

[44] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,

and Jeff Dean. Distributed representations of words and

phrases and their compositionality. In NeurIPS, 2013.

[45] Duy-Kien Nguyen, Vedanuj Goswami, and Xinlei Chen. Re-

visiting modulated convolutions for visual counting and be-

yond. arXiv, 2020.

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An

imperative style, high-performance deep learning library. In

NeurIPS, 2019.

[47] Jeffrey Pennington, Richard Socher, and Christopher D Man-

ning. Glove: Global vectors for word representation. In

EMNLP, 2014.

[48] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-

temporal representation with pseudo-3d residual networks.

In CVPR, 2017.

[49] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,

Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and

Peter J Liu. Exploring the limits of transfer learning with a

unified text-to-text transformer. JMLR, 2020.

[50] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In NeurIPS, 2015.

[51] Anna Rohrbach, Marcus Rohrbach, Niket Tandon, and Bernt

Schiele. A dataset for movie description. In CVPR, 2015.

[52] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In

NeurIPS, 2014.

[53] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In ICLR,

2015.

[54] Lucas Smaira, João Carreira, Eric Noland, Ellen Clancy,

Amy Wu, and Andrew Zisserman. A short note on the

kinetics-700-2020 human action dataset. arXiv, 2020.

[55] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu

Wei, and Jifeng Dai. Vl-bert: Pre-training of generic visual-

linguistic representations. In ICLR, 2020.

[56] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and

Cordelia Schmid. Videobert: A joint model for video and

language representation learning. In ICCV, 2019.

[57] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, 2015.

[58] Hao Tan and Mohit Bansal. Lxmert: Learning cross-

modality encoder representations from transformers. In

EMNLP, 2019.

[59] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with

3d convolutional networks. In ICCV, 2015.

[60] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann

LeCun, and Manohar Paluri. A closer look at spatiotemporal

convolutions for action recognition. In CVPR, 2018.

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, 2017.

[62] Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Mar-

cus Rohrbach, Raymond Mooney, and Kate Saenko. Trans-

lating videos to natural language using deep recurrent neural

networks. In NAACL, 2015.

[63] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment

networks: Towards good practices for deep action recogni-

tion. In ECCV, 2016.

[64] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In CVPR, 2018.

[65] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-

mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim

Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam

Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien

Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama

Drame, Quentin Lhoest, and Alexander M. Rush. Hugging-

face’s transformers: State-of-the-art natural language pro-

cessing. arXiv, 2019.

[66] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-

mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim

Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam

Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien

Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama

Drame, Quentin Lhoest, and Alexander M. Rush. Trans-

formers: State-of-the-art natural language processing. In

EMNLP: System Demonstrations, 2020.

7340



[67] Jiajun Wu, Yinan Yu, Chang Huang, and Kai Yu. Deep

multiple instance learning for image classification and auto-

annotation. In CVPR, 2015.

[68] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,

Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun,

Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neu-

ral machine translation system: Bridging the gap between

human and machine translation. arXiv, 2016.

[69] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher,

and Larry S Davis. Adaframe: Adaptive frame selection for

fast video recognition. In CVPR, 2019.

[70] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and

Kevin Murphy. Rethinking spatiotemporal feature learning:

Speed-accuracy trade-offs in video classification. In ECCV,

2018.

[71] Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang,

Xiangnan He, and Yueting Zhuang. Video question answer-

ing via gradually refined attention over appearance and mo-

tion. In ACM MM, 2017.

[72] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large

video description dataset for bridging video and language. In

CVPR, 2016.

[73] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell,

Russ R Salakhutdinov, and Quoc V Le. Xlnet: General-

ized autoregressive pretraining for language understanding.

In NeurIPS, 2019.

[74] Youngjae Yu, Jongseok Kim, and Gunhee Kim. A joint se-

quence fusion model for video question answering and re-

trieval. In ECCV, 2018.

[75] Youngjae Yu, Hyungjin Ko, Jongwook Choi, and Gunhee

Kim. Video captioning and retrieval models with semantic

attention. arXiv, 2016.

[76] Youngjae Yu, Hyungjin Ko, Jongwook Choi, and Gunhee

Kim. End-to-end concept word detection for video caption-

ing, retrieval, and question answering. In CVPR, 2017.

[77] Bowen Zhang, Hexiang Hu, and Fei Sha. Cross-modal and

hierarchical modeling of video and text. In ECCV, 2018.

[78] Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Ja-

son J Corso, and Jianfeng Gao. Unified vision-language pre-

training for image captioning and vqa. In AAAI, 2020.

[79] Luowei Zhou, Chenliang Xu, and Jason J Corso. Towards

automatic learning of procedures from web instructional

videos. In AAAI, 2018.

[80] Linchao Zhu and Yi Yang. Actbert: Learning global-local

video-text representations. In CVPR, 2020.

[81] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov,

Raquel Urtasun, Antonio Torralba, and Sanja Fidler. Align-

ing books and movies: Towards story-like visual explana-

tions by watching movies and reading books. In ICCV, 2015.

7341


