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Abstract

Recently, how to exploit unlabeled data for training face

recognition models has been attracting increasing atten-

tion. However, few works consider the unlabeled shallow

data1 in real-world scenarios. The existing semi-supervised

face recognition methods that focus on generating pseudo

labels or minimizing softmax classification probabilities of

the unlabeled data do not work very well on the unlabeled

shallow data. It is still a challenge on how to effectively uti-

lize the unlabeled shallow face data to improve the perfor-

mance of face recognition. In this paper, we propose a novel

face recognition method, named VirFace, to effectively ex-

ploit the unlabeled shallow data for face recognition. Vir-

Face consists of VirClass and VirInstance. Specifically, Vir-

Class enlarges the inter-class distance by injecting the unla-

beled data as new identities, while VirInstance produces vir-

tual instances sampled from the learned distribution of each

identity to further enlarge the inter-class distance. To the

best of our knowledge, we are the first to tackle the problem

of unlabeled shallow face data. Extensive experiments have

been conducted on both the small- and large-scale datasets,

e.g. LFW and IJB-C, etc, demonstrating the superiority of

the proposed method.

1. Introduction

Deep face recognition has benefit much from loss func-

tion [17, 30, 29, 6] and large-scale labeled datasets [28, 2,

10, 1]. Meanwhile, considering the fact that it is easy to

obtain large amount of unlabeled face data while annotat-

ing these unlabeled data is time-consuming, several works

[35, 34, 33, 36] has been proposed trying to enhance face

recognition performance via the unlabeled face data. How-

ever, in real-world scenarios, the unlabeled face data prefers

containing large amount of identities but only very few im-

*Equal contribution.
1Shallow data means there are only few images per identity [8].

Figure 1. The dilemma of the existing semi-supervised face recog-

nition methods on shallow data. (a) shows the clustering results

of shallow data. In this figure, the error clusters are marked with

red and purple circles. It is obvious that shallow data is hard to

be well clustered. (b) presents the optimal problem of UIR loss.

During training, the goal of optimizing these unlabeled data is to

move them towards the centroid point of the labeled data. This is

hard to optimize and may converge into a trivial solution.

ages per identity, namely shallow face data [8]. For bet-

ter quantitative analysis, we define the shallow data as the

data with no more than 5 images per identity in this paper.

In such situation, we find that the existing semi-supervised

learning methods [35, 34, 33, 36] do not work well.

Specifically, the clustering based methods [34, 33, 36]

intend to assign the unlabeled data with pseudo-labels, and

then combining with the labeled data together to train a new

model. However, it is hard to cluster the shallow data as

shown in Figure 1(a). In this figure, the red circles denote

the error clusters that the samples from different identities

are clustered into a same category, while the purple circles

represent another kind of the clustering error that the sam-

ples from the same identity are clustered into different cate-

gories. Another work [35] proposed Unknown Identity Re-

jection(UIR) loss to make the unlabeled data be rejected by

all the identities. However, as shown in Figure 1(b), it is

easy to optimize the model to converge into a trivial solu-
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tion, i.e. optimizing all the unlabeled data to the centroid of

the labeled data. Moreover, Yu Liu et al. [19] indicates that

UIR loss may learn an identity-irrelevant feature represen-

tation.

Additionally, self-learning is also a candidate solution

for utilizing the unlabeled shallow data. Methods such as

MOCO [12], SimCLR [4], and BYOL [9] have shown their

superiority on representation learning in object classifica-

tion as well as several downstream tasks e.g. object detec-

tion and segmentation. The core ingredient of above works

is data augmentation which is utilized to obtain the pos-

itive samples and plays an important role in performance

improvement. However, data used in face recognition is al-

ways aligned such that some data augmentation methods

such as random cropping and rotation which are widely

used in self-learning cannot be utilized.

In this paper, we propose VirFace, which consists of

VirClass and VirInstance, to improve the supervised face

recognition through the unlabeled shallow data. VirClass

enlarge the inter-class distance by injecting the unlabeled

data as new identities into the labeled space, while VirIn-

stance produces virtual instances sampled from the learned

distribution of each identity to further enlarge the inter-class

distance. In summary, our proposed VirFace method can

effectively utilize the unlabeled shallow data to learn a dis-

criminative feature representation and to improve the per-

formance over the supervised baselines.

The main contribution of this paper can be summarized

as follows:

1. We propose a novel face recognition approach named

VirFace which is the first to work on the unlabeled shallow

data situation.

2. Our proposed VirFace contains VirClass and VirIn-

stance which intend to enlarge inter-class distance and learn

a discriminative feature representation.

3. The extensive experiments present significant perfor-

mance improvement over supervised baselines in unlabeled

shallow situation compared to other unlabeled approaches.

2. Related Work

2.1. SemiSupervised Face Recognition

Most semi-supervised face recognition methods are

clustering-based methods [34, 33, 36]. In these works,

the unlabeled data is clustered and assigned with pseudo-

labels. Then the pseudo-labeled data is combined with the

labeled data to re-train the face recognition model. These

clustering-based methods have achieved promising perfor-

mance when the unlabeled data is from unshallow dataset,

e.g. MS1M [10], VGGFace2 [2], IMDB-SenseTime [28],

etc. However, on the shallow data, the existing cluster meth-

ods cannot achieve a good clustering performance due to the

error clustering issues indicated in Figure 1(a).

Another method that works on the unlabeled face data

is UIR [35]. An Unknown Identity Rejection(UIR) loss is

proposed to learn a compact feature representation. To fa-

cility this, UIR loss minimizes the probabilities of all iden-

tities on the unlabeled data which does not belong to any la-

beled identity. However, this may lead the model converge

to the centroid of the labeled dataset which is a single point.

Furthermore, as discussed in [22], UIR loss may learn an

identity-irrelevant feature representation.

2.2. SelfSupervised Learning and Metric Learning

Recently, self-supervised learning has achieved great im-

provement in object classification and several downstream

tasks e.g. object detection and segmentation [12, 4, 5, 9].

SimCLR [4, 5] studies the influence of projection head and

different data augmentation methods. It also forms a stan-

dard data augmentation protocol consisting of random crop-

ping, color distortion and Gaussian blur in order to generate

positive samples for self-supervised learning. In order to

increase the size of dictionary and keep the dictionary and

the encoder in sync, MOCO [12] proposes a first-in-first-

out queue dictionary and a momentum update protocol for

dictionary model updating. BYOL [9] proposed an implicit

contrastive learning method in which only positive pairs are

used to simplify the training process. These self-supervised

learning methods are all based on the augmentation method

proposed in SimCLR [5]. While in face recognition task,

since face images are often aligned first, it is impossible to

implement the data augmentation which are widely used in

self-learning, e.g. random cropping and rotation.

Metric learning methods have been implemented in su-

pervised face recognition for a long time [26, 27, 24]. Since

only pair-wise labels are needed, metric learning is a pos-

sible candidate for applying the unlabeled data. Consider-

ing that the number of the pairs used in the metric learning

paradigm is restricted by the mini-batch size and the pairs’

extraction strategy is tricky, these metric learning methods

cannot achieve very high performance. Though most of

these metric learning methods only take one negative pair

into account, N-pair loss [26] considers multiple negative

pairs and has made some progress in face recognition. Thus,

we try to utilize the N-pair loss on the unlabeled shallow

data along with ArcFace [6], but it doesn’t work very well.

3. Proposed Method

In this section, we introduce our proposed VirFace

method which contains VirClass and VirInstance. VirClass

injects the unlabeled data as new identities into the labeled

space to enlarge the inter-class distance, while VirInstance

further sparse the inter-class by producing virtual instances

sampled from the learned distribution of each identity.

Before we introduce our proposed method in detail, we

first summarize the angular-margin based supervised face
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Figure 2. Geometrical interpretation of VirFace.(a) shows fea-

tures and centroids from two identities through the supervised pre-

trained model. (b) denotes the influence of adding a virtual class.

The green arrow represents the virtual class. (c) represents the

effect of VirFace which is the combination of VirClass and VirIn-

stance. The crosses here stand for the virtual instances.

recognition losses as

L = −
1

N

N∑

i=1

log
f(wyi

, xi,m)

f(wyi
, xi,m) +

∑n

j 6=yi
f(wj , xi)

(1)

where f(·) describes the cosine exponential term in

SphereFace [17], AM-softmax [29], CosFace [30], or Arc-

Face [6]. m is the angular margin. w denotes the weight of

the last FC layer and x indicates the output feature of back-

bone. N and n represent the batch size and the class num-

ber, respectively. In this section, we use this f(·) function

to describe the cosine exponential term in our loss function

for simplicity.

Since it is simple to deduplicate the overlapping identi-

ties by adding a softmax layer after the last FC layer and

setting a threshold [35], we assume that the unlabeled data

has no overlap identities with the labeled data. Section 3.4

introduces the detail of the deduplication method used in

this paper.

In the rest of this section, we first give a brief description

of VirClass and VirInstance which are two main compo-

nents in our proposed VirFace method, and then the training

strategy and the deduplication method are discussed.

3.1. VirClass

Since the unlabeled data has no label to indicate the exact

identity the data belongs to, inspired by the Virtual-Softmax

[3], we propose a concept of virtual class to give the unla-

beled data a virtual identity in mini-batch. We treat these

virtual classes as negative classes and try to find the cen-

troid of each virtual class as the weight w in the last FC

layer does which have been discussed in [31, 18]. Since the

unlabeled data is shallow such that it is hard to find sam-

ples from the same identity in a mini-batch, each unlabeled

feature can be a substitute to represent the centroid of its

virtual class. Then we inject these centroids into the labeled

space and maximize the angles between the labeled samples

and the centroids of virtual classes to enlarge the inter-class

distance. In order to reduce the storage cost and the com-

putational consumption, we dynamically update the virtual

classes along with the mini-batch.
To facilitate this, we add a virtual class term into the

angular-based loss:

Pvci =
f(wyi , xi,m)

f(wyi , xi,m) +
∑n

j 6=yi
f(wj , xi) +

∑U

u=1
f(vu, xi)

(2)

Lvc = −
1

N

N∑

i=1

logPvci (3)

where U is the number of unlabeled data in mini-batch

while N is the number of the labeled data in mini-batch.

vu = xu is the centroid of the virtual class u.

By optimizing Lvc, the inter-class distance can be en-

larged by the additional virtual classes as shown in Figure

2(b). We name this virtual classes injecting method as Vir-

Class.

Our further study finds that it is less likely to have sam-

ples of the same identity in a mini-batch when the identity

number in the unlabeled data is much larger than the batch

size. Meanwhile, since the unlabeled data is only worked as

negative virtual classes, the samples with same identity in a

mini-batch is equivalent to weight the corresponding virtual

class. Thus, based on these analyses, our VirClass method

can also work in the deep data situation.

3.2. VirInstance

For the purpose of exploiting more potential of the un-

labeled data, we propose a further enhancement component

VirInstance to get better use of the unlabeled data. VirIn-

stance tends to generate feature distribution of each virtual

class and then maximize the distance between the labeled

centroids and the feature distributions of virtual classes to

enlarge the inter-class distance as shown in Figure 2(c).

According to the central limit theorem [21], regardless

the original distribution, the sampling distribution is always

close to the normal distribution if the sampling number is

large enough. If we treat all face features as a full face fea-

ture set, the features of each identity can be regarded as a

sampling subset of the full set following a similar distribu-

tion form. Thus, we can learn this distribution form from

labeled features and then predict the feature distributions

of the unlabeled identities, i.e. the virtual classes, via the

learned distribution form.

In order to formulate the distribution of each virtual class

more conveniently, we randomly sample multiple virtual

instances from the distribution of each virtual class. The

virtual instances from the same virtual class represent the

corresponding feature distribution. Thus, maximizing the

distances between the labeled centroids and the feature dis-

tributions of virtual classes is the same to maximize the
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Figure 3. The framework of VirFace. VirClass and VirInstance are marked separately. W indicates the labeled centroids, i.e. the weights

of the last FC layer in the pre-trained model. C denotes the concatenation operation.

distances between the labeled centroids and the virtual in-

stances of each virtual class.

The loss function can be formulated as follows:

Pvii,s =
f(vi, xsi ,m)

f(vi, xsi ,m) +
∑U

u 6=i
f(vu, xsi) +

∑n

j=1
f(wj , xsi)

(4)

Lvi = −
1

U

U∑

i=1

S∑

s=1

logPvii,s (5)

where vi is the centroid of virtual class i, and xsi denotes

the sth generated virtual instance of virtual class i. wl is

the centroid of label l in the labeled data. U and S denote

the number of virtual classes and the number of virtual in-

stances sampled from one virtual class.

We implemented a VAE network [16, 23] to predict the

feature distribution and generate instances sampled from the

feature distribution. For the encoder, our aim is to fit the

distribution of each identity instead of the distribution of

the whole dataset. Thus, we change the reconstruction loss

of the VAE network to make the sampled features closer to

the corresponding identity centroid as follows:

LG =
1

N

N∑

i=1

‖wi −G(Fi)‖
2
+ LKL (6)

where wi denotes the centroid of identity i and Fi denotes

the input feature. G(·) presents the VAE network. LKL

denotes the KL divergence loss.

We train this VAE network with the labeled features.

Then, we use this trained VAE network to predict the fea-

ture distribution of the unlabeled data and generate virtual

instances of the corresponding virtual class. The architec-

ture of the VAE network and the detail of KL divergence

loss are shown in supplementary.

3.3. Training strategies

Our VirFace is the combination of VirClass and VirIn-

stance. The loss function is shown below:

LV irFace = Lvc + Lvi (7)

Since the f(·) function in Lvc and Lvi shown in Eq. 2

and Eq. 4 can refer to any of the angular-margin based loss

functions, our proposed VirFace can work with any angular-

margin based supervised face recognition method.

The framework of our proposed VirFace is shown in Fig-

ure 3. We divide the whole training process into two stages:

pre-train stage and refining stage. Since the weight w of

the last FC layer can denote the centroid of each identity

in the pre-trained model [31, 18], we train the backbone

network with the labeled data first. We use supervised face

recognition loss function in the training process of the back-

bone network. After this, the VAE network is trained with

the centroids of the identities and the labeled features out-

puting from the pre-trained backbone network. In the re-

fining stage, we use the iterative training strategy to refine

the backbone network and update the VAE network in order

to keep sync. Algorithm 1 presents a clear pipeline of our

training strategy.

3.4. Deduplication Process

Since it is common to have overlapping identities be-

tween the labeled data and the unlabeled data, we utilize

a simple method to solve this issue. In the pre-train stage,

we add a softmax layer following the last FC layer of the

backbone network. Since the backbone network is trained

with the labeled data, the max activation value of the la-

beled identities always hold a higher value than that of the

unlabeled ones. Thus, we set a threshold to deduplicate the

overlapping samples: the samples with a higher value over

the threshold will be treated as an overlapping sample and
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Algorithm 1: The Pipeline of VirFace

Data: Labeled data DL, Unlabeled data DU

/* Pre-train stage */

1 Backbone
train
←− DL;

2 Deduplication if necessary;

3 Generator
train
←− DL, fixedBackbone;

/* Refining Stage */

4 Loop

5 Backbone
train
←− DL, DU , fixed Generator;

6 Generator
train
←− DL, fixed Backbone;

7 end

Output: Backbone

will be dropped, otherwise the samples will be used as un-

labeled data. In our experiments, the threshold is set to 0.8.

4. Experiments

In this section, we first describe the datasets and our

implementation details in Section 4.1. Section 4.2 shows

evaluation results and analysis of our proposed VirFace and

the conventional semi-supervised face recognition methods

when training on the unlabeled shallow face data. Then, the

ablation study on VirFace is shown in Section 4.3. Finally,

section 4.4 presents the performance of VirFace on large

scale data and large scale networks.

4.1. Experimental Settings

Table 1 shows details of the training set and the testing

set employed in our experiments.

Training Datasets. We employ the public dataset

MS1M [10] as our training data. This data has been cleaned

via the protocol mentioned in [6] so that the training data

has no overlapping identities with the testing data. To con-

struct shallow data, we divide the whole dataset into the la-

beled data and the unlabeled shallow data. In the real-world

situation, the identities and samples of the unlabeled data

are much more than those of the labeled data and the labeled

data has limited identities but enough samples per identity.

In order to fit this situation, we retain all samples which

hold the labeled identities to build up the labeled data, and

then randomly select 5 samples for each unlabeled identity

to construct the unlabeled data. As a result, our label data

contains 4,214 IDs and 77,935 samples denoting as MS1M-

label, while the unlabeled shallow data consists 80,068 IDs

and 400,222 samples denoting as MS1M-unlabel. These

two datasets have no overlapping identities for simplicity.

For the purpose of verifying VirFace in large-scale

dataset, we also employ Glint360k [1] as the unlabeled shal-

low data by randomly selecting 5 samples per identity. This

unlabeled large-scale dataset consists 358,019 identities and

Datasets #Identity #Images/Video

MS1M-label 4,214 77,935

MS1M-unlabel 80,068 400,222

MS1M [10] 84,282 5,757,574

Glint360k-unlabel 358,019 1,699,393

web collected — 4,851,311

LFW [14] 5,749 13,233

CFP-FP [25] 500 7,000

CPLFW [37] 5,749 11,652

CALFW [38] 5,749 12,174

SLLFW [7] 5,749 13,233

IJB-B [32] 1,845 76.8K

IJB-C [20] 3,531 148.8K
Table 1. Detail of training and testing datasets.

1,699,393 samples and is denoted as Glint360k-unlabel. In

order to evaluate the ability of our proposed method in real-

world scenarios, we also collect 4.8M images without label

from website denoting as web-collected. We use the whole

MS1M dataset as the labeled dataset to evaluate in the large-

scale dataset.

Testing Datasets. During training, We evaluate our

method on face verification datasets (e.g. LFW [14],

CPLFW [37], CALFW [38], CFP-FP [25]) to check the per-

formance of different settings. Besides, we also compare

with other semi-supervised methods on SLLFW [7], IJB-

B/C [32, 20], and MegaFace [15].

Implementation Details. For the backbone network ar-

chitecture, we employ ResNet-50 and ResNet-101 [13, 11]

to get 512-D embedding feature. We use the state-of-the-

art ArcFace loss [6] as our basic loss. In the VAE network,

we use one FC layer combining with two symmetric FC

layers as an encoder to generate the feature distribution of

each identity, while a re-sample layer following by two FC

layers are used as a decoder to randomly sample and recon-

struct virtual instances. More details of the VAE network

architecture are in the supplementary.

In the pre-train process, the backbone network is trained

on the labeled dataset for 20 epochs with 0.1 learning rate.

The VAE network is trained on the labeled data for 4 epochs

with 0.1 learning rate. In the refining process, the backbone

network is fine-tuned on both the labeled and the unlabeled

dataset with 10 epochs, while the VAE network updates for

4 epochs every 2 backbone training epochs. The learning

rate is still 0.1 and decays on the [3rd, 5th, 7th, 9th] epoch.

Batch size is setting to 144, and in a mini-batch, the number

of the labeled and the unlabeled data are equal.

4.2. Evaluation Results

Table 2 shows the evaluation results of our proposed

method and the conventional semi-supervised methods. We
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Methods LFW CALFW CPLFW SLLFW CFP-FP
IJB-B IJB-C

Ver@1e-4 Id@Rank1 Ver@1e-4 Id@Rank1

ResNet50 Baseline 96.68 82.27 65.75 88.80 83.77 57.84 72.14 61.06 71.80

Cluster all 89.20 66.27 56.80 72.23 73.23 25.79 46.30 29.71 45.47

Cluster

(#sample>1)
94.20 75.72 61.08 80.72 78.39 43.42 59.85 46.58 58.58

UIR [35] 96.68 83.25 66.67 89.95 80.60 63.58 74.20 66.74 74.53

N-pair [26] 97.00 83.15 65.68 89.60 84.09 58.67 72.27 62.09 72.27

VirClass 97.33 85.28 68.01 91.00 85.74 62.37 75.93 66.26 76.25

VirFace 97.40 86.40 69.03 92.56 85.74 64.34 76.23 67.67 76.31

Table 2. Evaluation results in RseNet50 and MS1M subsets. Our methods are shown in bold, and the best results are shown in red.

#ID #Sample

Ground Truth 80,068 400,222

Clustering Result 267,814 400,222

Clustering Result #sample>1 31,491 163,899

Clustering Result #sample= 1 236,323 236,323
Table 3. Clustering result of MS1M-unlabeled subset.

use MS1M-label as the labeled data and MS1M-unlabel

as the unlabeled data. The architecture of backbone used

here is ResNet-50. In Table 2, “ResNet50 Baseline” de-

notes the result of training only on the labeled data. “Clus-

ter” represents the cluster-based methods. In “Cluster all”,

we combine all the pseudo labeled clustered data with

the labeled data to form the training set, while in “Clus-

ter(#sample>1)”, we only use the clustered data whose

pseudo label holds more than one sample. We also compare

with UIR [35] and the modified N-pair loss [26]. “VirClass”

and “VirFace” denote our proposed method without/with

the VirInstance part. In Table 2, our VirClass model sig-

nificantly outperforms other methods on all testing datasets.

The VirFace which combines VirInstance with VirClass im-

proves the performance of VirClass.

Analysis of Cluster-based Methods. The main reason

that the cluster-based methods is inferior to the baseline is

the poor quality of the pseudo labels. Table 3 shows the

cluster result of Face-GCN [34] in our unlabeled subset

which has 5 images per identity. Our unlabeled subset is

clustered into 267,814 categories, which is over three times

of the ground truth identity number. Moreover, for samples

in the same cluster, we assume that the samples are clus-

tered correctly when their ground truth identity holds the

most samples in the cluster, while the samples with other

ground truth identities are noise samples. Thus, the ratio of

the correctly clustered samples over all samples is 35.76%

which means almost 2/3 of the samples are noise. Then

we go deeper into the clusters and find that 99.24% iden-

tities are clustered into several categories, which obviously

increase the inter-class noise. Meanwhile, among the cat-

egories which have more than one sample, 85.07% holds

samples from different identities meaning that the intra-

class noise is also at a high level. Therefore, it is normal

for the cluster-based methods to fail in the unlabeled shal-

low situation.

Analysis of UIR [35] and N-pair [26]. As described in

Section 2.1, the UIR loss is hard so optimize and may lead

to extracting identity-irrelevant features. Thus, it is hard to

train and shows limited improvement over the baseline. N-

pair is a representative of metric learning method which can

work in both the labeled and the unlabeled situation. We use

ArcFace [6] combined with N-pair loss to train. The result

presents that N-pair loss brings limited improvement.

4.3. Ablation Study

We use MS1M-label and MS1M-unlabel subsets as the

labeled and the unlabeled dataset, respectively. The back-

bone architecture is ResNet-50 in this section. The face

verification datasets are LFW [14], CPLFW [37], CALFW

[38], CFP-FP [25]. More results are shown in supplemen-

tary.

4.3.1 VirClass

In this section, we define several factors of the unlabeled

data i.e. shallow rate, identity number and the scale of the

unlabeled training set, to analyze the influence of these fac-

tors to the performance. Shallow rate means the number of

samples per identity. Identity number denotes the number

of the identities in the unlabeled dataset, and the scale of

the unlabeled training set represents the number of samples

in the unlabeled dataset. As our experiments, the scale of

the unlabeled training set is the greatest factor to impact the

face recognition performance.

Influence of Shallow Rate and Identity Number. In

this part, we fix the scale of the unlabeled training set to

80,068, and evaluate different combinations of the shallow

rate and the identity number. Table 4 shows the evaluation

results on various testing datasets. From the results, the per-

formances of different combinations have changed very lit-

tle which means our VirClass method is not such sensitive

to the shallow rate and the identity number when the scale

of the unlabeled training set is fixed. Also, when the shal-

low rate equals to 5 and the identity number is 16,014, the
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Methods LFW CALFW CPLFW CFP-FP

ResNet50 Baseline 96.68 82.27 65.75 83.77

shallow rate = 1

80,068 ids
97.05 84.53 67.10 84.25

shallow rate = 2

40,034 ids
97.15 84.48 67.18 84.11

shallow rate = 5

16,014 ids
97.01 84.38 67.03 83.88

Table 4. Result of different combination of shallow rate and iden-

tity number when fixing the scale of the unlabeled training set.

Methods LFW CALFW CPLFW CFP-FP

ResNet50 Baseline 96.68 82.27 65.75 83.77

80,068 samples

shallow rate = 1
97.05 84.53 67.10 84.25

160,136 samples

shallow rate = 2
97.21 84.93 67.88 84.64

400,222 samples

shallow rate = 5
97.33 85.28 68.01 85.74

Table 5. Results of different scales of the unlabeled training set.

performance is the worst though the reduction is not much.

Since this experiment holds the smallest identity number,

the reduction may due to the lack of diversity in the training

set.

Influence of the Scale of the unlabeled Training Set.

In this part, we fix the identity number to 80,068 in order

to guarantee the diversity, and evaluate the influence of dif-

ferent scales of the unlabeled training set. The results are

shown in Table 5. The performance improves obviously as

the scale of the unlabeled training set increases. Though the

shallow rate is also changed with the increment of the scale

of the unlabeled training set, it is obvious that the shallow

rate has little contribution to the improvement when com-

pare the 160,136 samples result in Table 5 with the shallow

rate = 2 term in Table 4. Thus, the scale of the unlabeled

training set is the most important factor on the VirClass im-

provement.

4.3.2 VirInstance

Improvement of the VirInstance. In this part, we demon-

strate the performance of the VirInstance method. We eval-

uate it on different scales of the unlabeled training set and

fix the sampling number of the VAE network to 5. The re-

sults are shown in Figure 4. The bars from left to right de-

note the performance of the ResNet50 baseline, VirClass

and VirFace, respectively. The x-axix is the different scales

of the unlabeled training set, and the y-axix is the perfor-

mance. It shows that VirInstance can improve the perfor-

mance of VirClass.

Sampling Number. We study the effect of different

sampling number of the VAE network on the basis of the

1-shallow rate VirClass model. Sampling number means

the number of the sampled virtual instances for each virtual

Figure 4. The improvement of VirInstance over VirClass.

class. The results are shown in Table. 7. The performance

gets better as the sampling number increases. When sam-

pling number is 5, our VirFace method reaches the best per-

formance. The overall performance tends to be stable when

sampling number exceeds 5.

Comparison with Data Augmentation. In this part,

we compare the VirInstance method with the traditional

data augmentation method. Different from our VirInstance,

the data augmentation method generates images instead of

features. We implement the random combination of blur

and color jitter as data augmentation. They are friendly to
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Methods
labeled

dataset

unlabeled

dataset
LFW CALFW CPLFW SLLFW CFP-FP

IJB-B IJB-C

Ver@1e-4 Id@Rank1 Ver@1e-4 Id@Rank1

ResNet50

Baseline
MS1M — 99.55 94.71 83.11 98.88 96.80 85.07 89.63 87.43 90.82

ResNet50

VirFace
MS1M

Glint360k

unlabel
99.61 94.96 83.35 98.96 96.78 87.54 90.23 89.60 91.34

ResNet50

VirFace
MS1M

web-collected

dataset
99.58 94.80 83.85 98.90 96.78 87.94 90.54 90.18 91.65

ResNet101

Baseline
MS1M — 99.55 94.88 86.10 99.03 97.30 86.11 90.96 87.86 92.02

ResNet101

VirFace
MS1M

Glint360k

unlabel
99.58 95.11 86.51 99.13 97.51 88.45 91.47 90.19 92.33

ResNet101

VirFace
MS1M

web-collected

dataset
99.56 95.15 86.25 99.13 97.15 88.90 91.66 90.54 92.68

Table 6. Result on large-scale dataset. The performance improvements are shown in italic, and the best results are in italic & bold.

Methods LFW CALFW CPLFW CFP-FP

VirClass Baseline 97.05 84.53 67.10 84.25

VirFace

(Sampling number = 2)
97.20 84.35 68.18 85.05

VirFace

(Sampling number = 5)
97.40 86.40 69.03 85.74

VirFace

(Sampling number = 10)
97.26 85.56 68.05 84.85

Table 7. Results of different sampling number.

face recognition task as human face image is highly aligned.

We generate 5 instances for both methods. The results

are shown in Table. 8. There is little improvement when

use the data augmentation method, denoted as “VirClass +

DataAug” and VirInstance method outperforms on all the

testing datasets. The reason is that the images generated by

the data augmentation method are similar, resulting in lack

of variation in the feature space which means these features

are almost the same as the original one bringing little help.

To clearly demonstrate our analysis, we randomly sam-

ple 5,000 unlabeled images and generate 5 feature instances

per image via the data augmentation method and our VirIn-

stance method, respectively. Then, we calculate the cosine

distance between the generated feature instances and the

original features. The mean cosine distance of the data aug-

mentation method is 0.83, while that of the VirInstance is

0.74. Since the data augmentation method holds a larger co-

sine distance, it is obvious that the feature instances gener-

ated by the data augmentation method is more similar to the

original ones. Therefore, the VirInstance can increase the

variation of the unlabeled data, which can enlarge the inter-

class distance and significantly improve the performance.

4.4. Performance on the LargeScale Training

In this part, we demonstrate that our method can also

work in the large-scale labeled and unlabeled dataset. We

test on both ResNet-50 and ResNet-101 architectures. The

MS1M dataset [10] which has over 5M images is used as the

labeled dataset. Glint360k-unlabel dataset is used as the un-

labeled dataset. In order to test on the real-world scenario,

Methods LFW CALFW CPLFW CFP-FP

VirClass Baseline 97.05 84.53 67.10 84.25

VirClass + DataAug

(Generation number = 5)
97.20 85.06 65.88 83.82

VirFace

(Sampling number = 5)
97.40 86.40 69.03 85.74

Table 8. Comparison with data augmentation method.

we also collect 4.8M face images from website and con-

struct an unlabeled dataset. The results are shown in Table

6. From the results, it is obvious that our proposed VirFace

method can also work well on the large-scale datasets and

the deep network architectures. Moreover, since the web-

collected dataset is collected in real-world scenario and our

VirFace method shows an improvement on it, it is clear that

our proposed VirFace method can also work well in the real-

world scenario.

5. Conclusion

In this paper, we proposed a semi-supervised face recog-

nition framework dubbed VirFace to enhance the supervised

face recognition performance via exploiting the unlabeled

shallow data. We conducted comprehensive analysis and

quantitative comparison on each part of our proposed Vir-

Face method. The results validated the effectiveness of our

proposed method. Moreover, we compared our proposed

VirFace with the conventional semi-supervised face recog-

nition methods and the experiments on various face recog-

nition benchmarks showed the superiority of our proposed

method.
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