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Abstract

Crowd counting is a fundamental yet challenging task,

which desires rich information to generate pixel-wise crowd

density maps. However, most previous methods only used

the limited information of RGB images and cannot well

discover potential pedestrians in unconstrained scenarios.

In this work, we find that incorporating optical and ther-

mal information can greatly help to recognize pedestrians.

To promote future researches in this field, we introduce

a large-scale RGBT Crowd Counting (RGBT-CC) bench-

mark, which contains 2,030 pairs of RGB-thermal images

with 138,389 annotated people. Furthermore, to facili-

tate the multimodal crowd counting, we propose a cross-

modal collaborative representation learning framework,

which consists of multiple modality-specific branches, a

modality-shared branch, and an Information Aggregation-

Distribution Module (IADM) to capture the complementary

information of different modalities fully. Specifically, our

IADM incorporates two collaborative information transfers

to dynamically enhance the modality-shared and modality-

specific representations with a dual information propaga-

tion mechanism. Extensive experiments conducted on the

RGBT-CC benchmark demonstrate the effectiveness of our

framework for RGBT crowd counting. Moreover, the pro-

posed approach is universal for multimodal crowd count-

ing and is also capable to achieve superior performance on

the ShanghaiTechRGBD [22] dataset. Finally, our source

code and benchmark have been released at http://

lingboliu.com/RGBT_Crowd_Counting.html.

1. Introduction

Crowd counting [18, 10] is a fundamental computer vi-

sion task that aims to automatically estimate the number of

people in unconstrained scenes. Over the past decade, this

task has attracted a lot of research interests due to its huge

*The corresponding author is Liang Lin. Lingbo Liu and Jiaqi Chen
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application potentials (e.g., traffic management [62, 28] and

video surveillance [52]). During the recent COVID-19 pan-

demic [47], crowd counting has also been employed widely

for social distancing monitoring [11].

In the literature, numerous models [64, 43, 27, 56, 1,

21, 26, 34, 30, 32] have been proposed for crowd counting.

Despite substantial progress, it remains a very challenging

problem that desires rich information to generate pixel-wise

crowd density maps. However, most previous methods only

utilized the optical information extracted from RGB images

and may fail to accurately recognize the semantic objects

in unconstraint scenarios. For instance, as shown in Fig. 1-

(a,b), pedestrians are almost invisible in poor illumination

conditions (such as backlight and night) and they are hard

to be directly detected from RGB images. Moreover, some

human-shaped objects (e.g., tiny pillars and blurry traffic

lights) have similar appearances to pedestrians [59] and they

are easily mistaken for people when relying solely on opti-

cal features. In general, RGB images cannot guarantee the

high-quality density maps, and more comprehensive infor-

mation should be explored for crowd counting.

Fortunately, we observe that thermal images can greatly

facilitate distinguishing the potential pedestrians from clut-

tered backgrounds. Recently, thermal cameras have been

extensively popularized due to the COVID-19 pandemic,

which increases the feasibility of thermal-based crowd

counting. However, thermal images are not perfect. As

shown in Fig. 1-(c,d), some hard negative objects (e.g., heat-

ing walls and lamps) are also highlighted in thermal images,

but they can be eliminated effectively with the aid of optical

information. Overall, RGB images and thermal images are

highly complementary. To the best of our knowledge, no

attempts have been made to simultaneously explore RGB

and thermal images for estimating the crowd counts. In this

work, to promote further researches of this field, we propose

a large-scale benchmark “RGBT Crowd Counting (RGBT-

CC)”, which contains 2,030 pairs of RGB-thermal images

and 138,389 annotated pedestrians. Moreover, our bench-

mark makes significant advances in terms of diversity and

difficulty, as these RGBT images were captured from un-
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(a) Backlight (b) Darkness (c) Heating negative objects  by day (d) Heating negative objects at night

Figure 1. Visualization of RGB-thermal images in our RGBT-CC benchmark. When only using optical information of RGB images, we

cannot effectively recognize pedestrians in poor illumination conditions, as shown in (a) and (b). When only utilizing thermal images,

some heating negative objects are hard to be distinguished, as shown in (c) and (d).

constrained scenes (e.g., malls, streets, train stations, etc.)

with various illumination (e.g., day and night).

Nevertheless, capturing the complementarities of multi-

modal data (i.e., RGB and thermal images) is non-trivial.

Conventional methods [22, 67, 37, 15, 54, 46] either feed

the combination of multimodal data into deep neural net-

works or directly fuse their features, which could not well

exploit the complementary information. In this work,

to facilitate the multimodal crowd counting, we intro-

duce a cross-modal collaborative representation learning

framework, which incorporates multiple modality-specific

branches, a modality-shared branch, and an Information

Aggregation-Distribution Module (IADM) to fully capture

the complementarities among different modalities. Specifi-

cally, our IADM is integrated with two collaborative com-

ponents, including i) an Information Aggregation Trans-

fer that dynamically aggregates the contextual information

of all modality-specific features to enhance the modality-

shared feature and ii) an Information Distribution Trans-

fer that propagates the modality-shared information to sym-

metrically refine every modality-specific feature for further

representation learning. Furthermore, the tailor-designed

IADM is embedded in different layers to learn the cross-

modal representation hierarchically. Consequently, the pro-

posed framework can generate knowledgeable features with

comprehensive information, thereby yielding high-quality

crowd density maps.

It is worth noting that our method has three appealing

properties. First, thanks to the dual information propaga-

tion mechanism, IADM can effectively capture the multi-

modal complementarities to facilitate the crowd counting

task. Second, as a plug-and-play module, IADM can be

easily incorporated into various backbone networks for end-

to-end optimization. Third, our framework is universal for

multimodal crowd counting. Except for RGBT counting,

the proposed method can also be directly applied for RGB-

Depth counting. In summary, the major contributions of this

work are three-fold:

• We introduce a large-scale RGBT benchmark to pro-

mote the research of crowd counting, in which 138,389

pedestrians are annotated in 2,030 pairs of RGB-

thermal images captured in unconstrained scenarios.

• We develop a cross-modal collaborative representation

learning framework, which is capable of fully learning

the complementarities among different modalities with

a Information Aggregation-Distribution Module.

• Extensive experiments conducted on two multimodal

benchmarks (i.e., RGBT-CC and ShanghaiTechRGBD

[22]) greatly demonstrate that the proposed method is

effective and universal for multimodal crowd counting.

2. Related Works

Crowd Counting Benchmarks: In recent years, we

have witnessed the rapid evolution of crowd counting

benchmarks. UCSD [3] and WorldExpo [57] are two early

datasets that respectively contain 2,000 and 3,980 video

frames with low diversities and low-medium densities. To

alleviate the limitations of the aforementioned datasets,

Zhang et al. [64] collected 1,198 images with 330,165 anno-

tated heads, which are of better diversity in terms of scenes

and density levels. Subsequently, three large-scale datasets

were proposed in succession. For instance, UCF-QNRF

[14] is composed of 1,535 high density images images with

a total of 1.25 million pedestrians. JHU-CROWD++ [45]

contains 4,372 images with 1.51 million annotated heads,

while NWPU-Crowd [50] consists of 2.13 million annota-

tions in 5,109 images. Nevertheless, all the above bench-

marks are based on RGB optical images, in which almost
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all previous methods fail to recognize the invisible pedes-

trians in poor illumination conditions. Recently, Lian et

al. [22] utilized a stereo camera to capture 2,193 depth im-

ages that are insensitive to illumination. However, these im-

ages are coarse in outdoor scenes due to the limited depth

ranges (0∼20 meters), which seriously restricts their de-

ployment scopes. Fortunately, we find that thermal im-

ages are robust to illumination and have large perception

distance, thus can help to recognize pedestrians under vari-

ous scenarios. Therefore, we propose the first RGBT crowd

counting dataset in this work, hoping that it would greatly

promote the future development in this field.

Crowd Counting Approaches: As a classics problem

in computer vision, crowd counting has been studied ex-

tensively. Early works [4, 5, 13] directly predict the crowd

count with regression models, while subsequent methods

usually generate crowd density maps and then accumulate

all pixels’ values to obtain the final counts. Specifically, a

large number of deep neural networks with various archi-

tectures [9, 57, 49, 48, 41, 17, 43, 21, 55, 29, 39, 16, 53]

and loss functions [2, 14, 34, 26] are developed for still

image-based crowd counting. Meanwhile, some methods

[60, 52, 40, 31] perform crowd estimation from multi-view

images or surveillance videos. However, all aforementioned

methods estimate crowd counts with the optical information

of RGB images/videos and are not effective when working

in poor illumination conditions. Recently, depth images are

used as auxiliary information to count and locate human

heads [22]. Nevertheless, depth images are coarse in out-

door scenarios, thus depth-based methods have relatively

limited deployment scopes. Nevertheless, depth images are

coarse in outdoor scenarios, thus depth-based methods have

relatively limited deployment scopes.

Multi-Modal Representation Learning: Multi-modal

representation learning aims at comprehending and repre-

senting cross-modal data through machine learning. There

are many strategies in cross-modal feature fusion. Some

simple fusion methods [19, 22, 46, 8] obtain a fused feature

with the operations of element-wise multiplication/addition

or concatenation in the “Early Fusion” and “Late Fusion”

way. To exploit the advantages of both early and late fu-

sion, various two-stream-based models [51, 38, 66, 63] pro-

pose to fuse hierarchical cross-modal features, achieving

the fully representative shared feature. Besides, a few ap-

proaches [33] explore the use of a shared branch, mapping

the shared information to common feature spaces. Further-

more, some recent works [7, 35, 58] are presented to ad-

dress RGBD saliency detection, which is also a cross-modal

dense prediction task like RGBT crowd counting. How-

ever, most of these works are one-way information transfer,

just using depth modality as auxiliary information to help

the representation learning of RGB modality. In this work,

we propose a symmetric dynamic enhancement mechanism
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Figure 2. The statistics histogram of people distribution in the pro-

posed RGBT Crowd Counting benchmark.

Table 1. The training, validation and testing sets of our RGBT-CC

benchmark. In each grid, the first value is the number of images,

while the second value denotes the average count per image.

Training Validation Testing

#Bright 510 / 65.66 97 / 63.02 406 / 73.39

#Dark 520 / 62.52 103 / 67.74 394 / 74.88

#Total 1030 / 64.07 200 / 65.45 800 / 74.12

Scene malls, streets, train/metro stations, etc

that can take full advantage of the modal complementarities

in crowd counting.

3. RGBT Crowd Counting Benchmark

To the best of our knowledge, there is currently no pub-

lic RGBT dataset for crowd counting. To promote the fu-

ture research of this task, we propose a large-scale RGBT

Crowd Counting (RGBT-CC) benchmark. Specifically, we

first use an optical-thermal camera to take a large number

of RGB-thermal images in various scenarios (e.g., malls,

streets, playgrounds, train stations, metro stations, etc). Due

to the different types of electronic sensors, original RGB

images have a high resolution of 2,048×1,536 with a wider

field of view, while thermal images have a standard resolu-

tion of 640×480 with a smaller field of view. On the basis

of coordinate mapping relation, we crop the corresponding

RGB regions and resize them to 640×480. We then choose

2,030 pairs of representative RGB-thermal images for man-

ual annotations. Among these samples, 1,013 pairs are cap-

tured in the light and 1,017 pairs are in the darkness. A total

of 138,389 pedestrians are marked with point annotations,

on average 68 people per image. The detailed distribution of

people is shown in Fig. 2. Finally, the proposed RGBT-CC

benchmark is randomly divided into three parts. As shown

in Table 1, 1030 pairs are used for training, 200 pairs are

for validation and 800 pairs are for testing. Compared with

those Internet-based datasets [14, 50, 45] with serious bias,

our RGBT-CC dataset has closer crowd density distribution

to realistic cities, since our images are captured in urban

scenes with various densities. Therefore, our dataset has

wider applications for urban crowd analysis.
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Figure 3. The architecture of the proposed cross-modal collaborative representation learning framework for multimodal crowd counting.

Specifically, our framework consists of multiple modality-specific branches, a modality-shared branch, and an Information Aggregation-

Distribution Module (IADM).

4. Method

In this work, we propose a cross-modal collaborative

representation learning framework for multimodal crowd

counting. Specifically, multiple modality-specific branches,

a modality-shared branch, and an Information Aggregation-

Distribution Module are incorporated to fully capture the

complementarities among different modalities with a dual

information propagation paradigm. In this section, we adopt

the representative CSRNet [21] as a backbone network to

develop our framework for RGBT crowd counting. It is

worth noting that our framework can be implemented with

various backbone networks (e.g., MCNN [64], SANet [2],

and BL [34]), and is also universal for multimodal crowd

counting, as verified in Section 5.4 by directly applying it

to the ShanghaiTechRGBD [22] dataset.

4.1. Overview

As shown in Fig. 3, the proposed RGBT crowd count-

ing framework is composed of three parallel backbones and

an Information Aggregation-Distribution Module (IADM).

Specifically, the top and bottom backbones are developed

for modality-specific (i.e. RGB images and thermal images)

representation learning, while the middle backbone is de-

signed for modality-shared representation learning. To fully

exploit the multimodal complementarities, our IADM dy-

namically transfers the specific-shared information to col-

laboratively enhance the modality-specific and modality-

shared representations. Consequently, the final modality-

shared feature contains comprehensive information and fa-

cilitates generating high-quality crowd density maps.

Given an RGB image R and a thermal image T , we

first feed them into different branches to extract modality-

specific features, which maintain the specific information

of individual modality. The modality-shared branch takes

a zero-tensor as input1 and aggregates the information of

1When the input of modality-shared branch is set to 0, Eq.3 at Conv1 2

is simplified as F̂
1,2
s = I

1,2
r ⊙Conv1∗1(I

1,2
r ) + I

1,2

t ⊙Conv1∗1(I
1,2

t ).
In other words, the initial modality-shared feature is generated by directly

aggregating the information of RGB and thermal features.

modality-specific features hierarchically. As mentioned

above, each branch is implemented with CSRNet, which

consists of (1) a front-end block with the first ten convo-

lutional layers of VGG16 [42] and (2) a back-end block

with six dilated convolutional layers. More specifically, the

modality-specific branches are based on the CSRNet front-

end block, while the modality-shared branch is based on

the last 14 convolutional layers of CSRNet. In our work,

the j-th dilated convolutional layer of back-end block is re-

named as “Conv5 j”. For convenience, the RGB, thermal,

and modality-shared features at Convi j layer are denoted

as F i,j
r , F

i,j
t , and F i,j

s , respectively.

After feature extraction, we employ the Information

Aggregation-Distribution Module described in Section 4.2

to learn cross-modal collaborative representation. To ex-

ploit the multimodal information hierarchically, the pro-

posed IADM is embedded after different layers, such as

Conv1 2, Conv2 2, Conv3 3, and Conv4 3. Specifically,

after Convi j, IADM dynamically transfers complementary

information among modality-specific and modality-shared

features for mutual enhancement. This process can be for-

mulated as follow:

F̂ i,j
s , F̂ i,j

r , F̂
i,j
t = IADM(F i,j

s , F i,j
r , F

i,j
t ), (1)

where F̂ i,j
s , F̂ i,j

r , and F̂
i,j
t are the enhanced features of

F i,j
s , F i,j

r , and F
i,j
t respectively. These features are then

fed into the next layer of each branch to further learn high-

level multimodal representations. Thanks to the tailor-

designed IADM, the complementary information of the in-

put RGB image and the thermal image is progressively

transferred into the modality-shared representations. The fi-

nal modality-shared feature F 5,6
s contains rich information.

Finally, we directly feed F 5,6
s into a 1*1 convolutional layer

for prediction of the crowd density map M .

4.2. Collaborative Representation Learning

As analyzed in Section , RGB images and thermal im-

ages are highly complementary. To fully capture their com-

plementarities, we propose an Information Aggregation and

Distribution Module (IADM) to collaboratively learn cross-
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Figure 4. (a) Information Aggregation Transfer: we first extract the contextual information Ir/It from modality-specific features Fr/Ft,

and then propagate them dynamically to enhance the modality-shared feature Fs. (b) Information Distribution Transfer: the contextual

information Îs of the enhance feature F̂s is distributed adaptively to each modality-specific feature for feedback refinement. “+” denotes

element-wise addition and “-” refers to element-wise subtraction.

modal representation with a dual information propagation

mechanism. Specifically, our IADM is integrated with two

collaborative transfers, which dynamically propagate the

contextual information to mutually enhance the modality-

specific and modality-shared representations.

1) Contextual Information Extraction: In this mod-

ule, we propagate the contextual information rather than

the original features, because the later manner would cause

the excessive mixing of specific-shared features. To this

end, we employ a L-level pyramid pooling layer to ex-

tract the contextual information for a given feature F i,j ∈
Rh×w×c. Specifically, at the lth level (l=1,...,L), we apply a

2l−1×2l−1 max-pooling layer to generate a h
2l−1×

w
2l−1 fea-

ture, which is then upsampled to h×w with nearest neigh-

bor interpolation. For convenience, the upsampled feature

is denoted as F i,j,l. Finally, the contextual information

Ii,j ∈ Rh×w×c of feature F i,j is computed as:

Ii,j = Conv1∗1(F
i,j,1 ⊕ F i,j,2 ⊕ ...⊕ F i,j,L), (2)

where ⊕ denotes an operation of feature concatenation and

Conv1∗1 is a 1*1 convolutional layer. This extraction has

two advantages. First, with a larger receptive field, each po-

sition at Ii,j contains more context. Second, captured by

different sensors, RGB images and thermal images are not

strictly aligned, as shown in Figure 1. Thanks to the transla-

tion invariance of max-pooling layers, we can eliminate the

misalignment of RGB-thermal images to some extent.

2) Information Aggregation Transfer (IAT): In our

work, IAT is proposed to aggregate the contextual infor-

mation of all modality-specific features to enhance the

modality-shared feature. As shown in Fig. 4-(a), instead

of directly absorbing all information, our IAT transfers

the complementary information dynamically with a gat-

ing mechanism that adaptively filters useful information.

Specifically, given features F i,j
r , F

i,j
t and F i,j

s , we first ex-

tract their contextual information Ii,jr , I
i,j
t , and Ii,js with

Eq. 2. Similar to [61, 65], we then obtain two residual infor-

mation I
i,j
r2s and I

i,j
t2s by computing the differences between

Ii,jr /I
i,j
t and Ii,js . Finally, we apply two gating functions to

adaptively propagate the complementary information for re-

fining the modality-shared feature F i,j
s . The enhanced fea-

ture F̂ i,j
s is formulated as follow:

I
i,j
r2s = Ii,jr − Ii,js , w

i,j
r2s = Conv1∗1(I

i,j
r2s),

I
i,j
t2s = I

i,j
t − Ii,js , w

i,j
t2s = Conv1∗1(I

i,j
t2s),

F̂ i,j
s = F i,j

s + I
i,j
r2s⊙w

i,j
r2s + I

i,j
t2s⊙w

i,j
t2s,

(3)

where the gating functions are implemented by convolu-

tional layers, w
i,j
r2s and w

i,j
t2s are the gating weights. ⊙ refers

to an operation of element-wise multiplication. With such

a mechanism, the complementary information is effectively

embedded into the modality-shared representation, thus our

method can better exploit the multimodal data.

3) Information Distribution Transfer (IDT): After

information aggregation, we distribute the information of

the new modality-shared feature to refine each modality-

specific feature respectively. As shown in Fig. 4-(b), with

the enhanced feature F̂ i,j
s , we first extract its contextual in-

formation Îi,js , which is then dynamically propagated to

F i,j
r and F

i,j
t . Simialr to IAT, two gating functions are

used for information filtering. Specifically, the enhanced

modality-specific features are computed as follow:

I
i,j
s2r = Îi,js − Ii,jr , I

i,j
s2t = Îi,js − I

i,j
t ,

w
i,j
s2r = Conv1∗1(I

i,j
s2r), w

i,j
s2t = Conv1∗1(I

i,j
s2t),

F̂ i,j
r = F i,j

r + I
i,j
s2r⊙w

i,j
s2r, F̂

i,j
t = F

i,j
t + I

i,j
s2t⊙w

i,j
s2t.

Finally, all enhanced features F̂ i,j
r , F̂

i,j
t , and F̂ i,j

s are fed

into the following layers of the individual branch for further

representation learning.

5. Experiments

5.1. Implementation Details & Evaluation Metrics

In this work, the proposed method is implemented with

PyTorch [36]. Here we take various models (e.g., CSR-

Net [21], MCNN [64], SANet [2], and BL [34]) as back-

bone to develop multiple instances of our framework. To

maintain a similar number of parameters to original mod-
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Table 2. The performance of different inputs and different representation learning approaches on our RGBT-CC benchmark.

Input Data Representation Learning GAME(0) ↓ GAME(1) ↓ GAME(2) ↓ GAME(3) ↓ RMSE ↓

RGB - 33.94 40.76 47.31 57.20 69.59

T - 21.64 26.22 31.65 38.66 37.38

RGBT

Early Fusion 20.40 23.58 28.03 35.51 35.26

Late fusion 19.87 25.60 31.93 41.60 35.09

W/O Gating Mechanism 19.76 23.60 28.66 36.21 33.61

W/O Modality-Shared Feature 18.67 22.67 27.95 36.04 33.73

W/O Information Distribution 18.59 23.08 28.73 36.74 32.91

IADM 17.94 21.44 26.17 33.33 30.91

Table 3. The performance under different illumination conditions on our RGBT-CC benchmark. The unimodal data is directly fed into

CSRNet, while the multimodal data is fed into our proposed framework based on CSRNet.

Illumination Input Data GAME(0) ↓ GAME(1) ↓ GAME(2) ↓ GAME(3) ↓ RMSE ↓

Brightness

RGB 23.49 30.14 37.47 48.46 45.40

T 25.21 28.98 34.82 42.25 40.60

RGBT 20.36 23.57 28.49 36.29 32.57

Darkness

RGB 44.72 51.70 57.45 66.21 87.81

T 17.97 23.38 28.39 34.95 33.74

RGBT 15.44 19.23 23.79 30.28 29.11

els for fair comparisons, the channel number of these back-

bones in our framework is respectively set to 70%, 60%,

60%, and 60% of their original values. The kernel param-

eters are initialized by Gaussian distribution with a zero

mean and a standard deviation of 1e-2. At each iteration,

a pair of 640×480 RGBT image is fed into the network.

The ground-truth density map is generated with geometry-

adaptive Gaussian kernels [64]. The learning rate is set to

1e-5 and Adam [20] is used to optimize our framework. No-

tice that the loss function of our framework is the same as

that of the adopted backbone network.

Following [25, 44, 24], we adopt the Root Mean Square

Error (RMSE) as an evaluation metric. Moreover, Grid Av-

erage Mean Absolute Error (GAME [12]) is utilized to eval-

uate the performance in different regions. Specifically, for

a specific level l, we divide the given images into 4l non-

overlapping regions and measure the counting error in each

region. Finally, the GAME at level l is computed as:

GAME(l) =
1

N

N∑

i=1

4
l∑

j=1

|P̂ j
i − P

j
i |, (4)

where N is the total number of the testing samples, P̂
j
i and

P
j
i are the estimated count and the corresponding ground-

truth count in the jth region of the ith image. Note that

GAME(0) is equivalent to Mean Absolute Error (MAE).

5.2. Ablation Studies

We perform extensive ablation studies to verify the ef-

fectiveness of each component in our framework. In this

subsection, CSRNet is utilized as the backbone network to

implement our proposed method.

1) Effectiveness of Multimodal Data: We first explore

whether the multimodal data (i.e., RGB images and thermal

images) is effective for crowd counting. As shown in Ta-

ble 2, when only feeding RGB images into CSRNet, we ob-

tain less impressive performance (e.g., GAME(0) is 33.94

and RMSE is 69.59), because we cannot effectively rec-

ognize people in dark environments. When utilizing ther-

mal images, GAME(0) and RMSE are sharply reduced to

21.64 and 37.38, which demonstrates that thermal images

are more useful than RGB images. In contrast, various mod-

els in the bottom six rows of Table 2 achieve better perfor-

mance, when considering RGB and thermal images simul-

taneously. In particular, our CSRNet+IADM has a relative

performance improvement of 17.3% on RMSE, compared

with the thermal-based CSRNet.

To further verify the complementarities of multimodal

data, the testing set is divided into two parts to measure the

performance in different illumination conditions separately.

As shown in Table 3, using both RGB and thermal images,

our CSRNet+IADM consistently outperforms the unimodal

CSRNet in both bright and dark scenarios. This is attributed

to the thermal information that greatly helps to distinguish

potential pedestrians from the cluttered background, while

optical information is beneficial to eliminate heating nega-

tive objects in thermal images. Moreover, we also visualize

some crowd density maps generated with different modal

data in Fig. 4. We can observe that the density maps and es-

timated counts of our CSRNet+IADM are more accurate.

These quantitative and qualitative experiments show that

RGBT images are greatly effective for crowd counting.

2) Which Representation Learning Method is Better?

We implement six methods for multimodal representation

learning. Specifically, “Early Fusion” feeds the concatena-

tion of RGB and thermal images into CSRNet. “Late Fu-

sion” extracts the RGB and thermal features respectively
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(a) RGB images (b) Thermal images (c) RGB results (d) Thermal results (e) Early fusion results (g) Ground-truth(f) Our results
Figure 5. Visualization of the crowd density maps generated in different illumination conditions. (a) and (b) show the input RGB images

and thermal images. (c) and (d) are the results of RGB-based CSRNet and thermal-based CSRNet. (e) shows the results of CSRNet that

takes the concatenation of RGB and thermal images as input. (f) refers to the results of our CSRNet+IDAM. And the ground-truths are

shown in (g). We can observe that our density maps and estimated counts are more accurate than those of other methods. (Best to zoom in

to view this figure.)

Table 4. Performance of different methods on the proposed RGBT-CC benchmark. All the methods in this table utilize both RGB images

and thermal images to estimate the crowd counts.

Backbone GAME(0) ↓ GAME(1) ↓ GAME(2) ↓ GAME(3) ↓ RMSE ↓

UCNet [58] 33.96 42.42 53.06 65.07 56.31

HDFNet [35] 22.36 27.79 33.68 42.48 33.93

BBSNet [7] 19.56 25.07 31.25 39.24 32.48

MVMS [60] 19.97 25.10 31.02 38.91 33.97

MCNN 21.89 25.70 30.22 37.19 37.44

MCNN + IADM 19.77 23.80 28.58 35.11 30.34

SANet 21.99 24.76 28.52 34.25 41.60

SANet + IADM 18.18 21.84 26.27 32.95 33.72

CSRNet 20.40 23.58 28.03 35.51 35.26

CSRNet + IADM 17.94 21.44 26.17 33.33 30.91

BL 18.70 22.55 26.83 34.62 32.67

BL + IADM 15.61 19.95 24.69 32.89 28.18

Table 5. Performance of different level numbers of the pyramid

pooling layer in IADM.
#Level GAME(0) GAME(1) GAME(2) GAME(3) RMSE

L=1 18.94 23.05 28.03 35.88 33.01

L=2 18.35 22.56 27.84 35.90 31.94

L=3 17.94 21.44 26.17 33.33 30.91

L=4 17.80 21.39 25.91 33.20 31.48

with two CSRNet and then combines their features to gen-

erate density maps. As shown in Table 2, these two models

are better than unimodal models, but their performance still

lags far behind various variants of our IADM. For instance,

without gating functions, the variant “W/O Gating Mecha-

nism” directly propagates information among different fea-

tures and obtains an RMSE of 33.61. The variant “W/O

Modality-Shared Feature” obtains a GAME(0) of 18.67 and

an RMSE of 33.73, when removing the modality-shared

branch and directly refining the modality-specific features.

When using the modality-shared branch but only aggregat-

ing multimodal information, the variant “W/O Information

Distribution” obtains a relatively better RMSE 32.91. When

using the full IADM, our method achieves the best perfor-

mance on all evaluation metrics. This is attributed to our

tailor-designed architecture (i.e., specific-shared branches,

dual information propagation) that can effectively learn the

multimodal collaborative representation, and fully capture

the complementary information of RGB and thermal im-

ages. These experiments demonstrate the effectiveness of

the proposed IADM for multimodal representation learning.

3) The Effectiveness of Level Number of Pyramid

Pooling Layer: In the proposed IDAM, an L-level pyra-

mid pooling layer is utilized to extract contextual informa-

tion. In this section, we explore the effectiveness of the

level number. As shown in Table 5, when L is set to 1, the

GAME(3) and RMSE are 35.88 and 33.01, respectively. As

the level number increases, our performance also becomes

better gradually, and we can achieve very competitive re-

sults when the pyramid pooling layer has three levels. More

levels over 3 will not bring additional performance gains.

Thus, the level number L is consistently set to 3 in our work.

5.3. Comparison with State­of­the­Art Methods

We compare the proposed method with state-of-the-art

methods on the large-scale RGBT-CC benchmark. The

compared methods can be divided into two categories. The

first class is the specially-designed models for crowd count-

ing, including MCNN [64], SANet [2], CSRNet [21], and
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Table 6. Performance of different methods on the ShanghaiTechRGBD benchmark. All the methods in this table utilize both RGB images

and depth images to estimate the crowd counts.

Method GAME(0) ↓ GAME(1) ↓ GAME(2) ↓ GAME(3) ↓ RMSE ↓

UCNet [58] 10.81 15.24 22.04 32.98 15.70

HDFNet [35] 8.32 13.93 17.97 22.62 13.01

BBSNet [7] 6.26 8.53 11.80 16.46 9.26

DetNet [23] 9.74 - - - 13.14

CL [14] 7.32 - - - 10.48

RDNet [22] 4.96 - - - 7.22

MCNN 11.12 14.53 18.68 24.49 16.49

MCNN + IADM 9.61 11.89 15.44 20.69 14.52

BL 8.94 11.57 15.68 22.49 12.49

BL + IADM 7.13 9.28 13.00 19.53 10.27

SANet 5.74 7.84 10.47 14.30 8.66

SANet + IADM 4.71 6.49 9.02 12.41 7.35

CSRNet 4.92 6.78 9.47 13.06 7.41

CSRNet + IADM 4.38 5.95 8.02 11.02 7.06

BL [34]. These methods are reimplemented to take the con-

catenation of RGB and thermal images as input in an “Early

Fusion” way. Moreover, MVMS [60] is also reimplemented

on RGBT-CC and pixel-wise attention map [6] is utilized

to fuse the features of optical view and thermal view. The

second class is several best-performing models for multi-

modal learning, including UCNet [58], HDFNet [35], and

BBSNet [7]. Based on their official codes, these methods

are reimplemented to estimate crowd counts on our RGBT-

CC dataset. As mentioned above, our IADM can be incor-

porated into various networks, thus here we take CSRNet,

MCNN, SANet, and BL as backbone to develop multiple

instances of our framework.

The performance of all comparison methods is shown

in Table 4. As can be observed, all instances of our

method outperform the corresponding backbone networks

consistently. For instance, both MCNN+IADM and

SANet+IADM have a relative performance improvement

of 18.9% on RMSE, compared with their “Early Fusion”

models. Moreover, our CSRNet+IADM and BL+IADM

achieve better performance on all evaluation metrics, com-

pared with other advanced methods (i.e., UCNet, HDFNet,

and BBSNet). This is because our method learns specific-

shared representations explicitly and enhances them mutu-

ally, while others just simply fuse multimodal features with-

out mutual enhancements. Thus our method can better cap-

ture the complementarities of RGB images and thermal im-

ages. This comparison has demonstrated the effectiveness

of our method for RGBT crowd counting.

5.4. Apply to RGBD Crowd Counting

We apply the proposed method to estimate crowd counts

from RGB images and depth images. In this subsection, we

also take various crowd counting models as backbone to de-

velop our framework on ShanghaiTechRGBD [22] bench-

mark. The implementation details of the compared meth-

ods are similar to the previous subsection. As shown in

Table 6, all instances of our framework are superior to

their corresponding backbone networks by obvious mar-

gins. Moreover, our SANet+IADM and CSRNet+IADM

outperform three advanced models (i.e., UCNet, HDFNet,

and BBSNet) on all evaluation metrics. More importantly,

our CSRNet+IADM achieves the lowest GAME(0) 4.38

and RMSE 7.05, and becomes the new state-of-the-art

method on ShanghaiTechRGBD benchmark. This experi-

ment shows that our approach is universal and effective for

RGBD crowd counting.

6. Conclusion

In this work, we propose to incorporate optical and ther-

mal information to estimate crowd counts in unconstrained

scenarios. To this end, we introduce the first RGBT crowd

counting benchmark with 2,030 pairs of RGB-thermal im-

ages and 138,389 annotated people. Moreover, we de-

velop a cross-modal collaborative representation learning

framework, which utilizes a tailor-designed Information

Aggregation-Distribution Module to fully capture the com-

plementary information of different modalities. Extensive

experiments on two real-world benchmarks show the effec-

tiveness and universality of the proposed method for multi-

modal (e.g., RGBT and RGBD) crowd counting.
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