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Abstract

Compositional Zero-Shot learning (CZSL) requires to

recognize state-object compositions unseen during training.

In this work, instead of assuming prior knowledge about the

unseen compositions, we operate in the open world setting,

where the search space includes a large number of unseen

compositions some of which might be unfeasible. In this set-

ting, we start from the cosine similarity between visual fea-

tures and compositional embeddings. After estimating the

feasibility score of each composition, we use these scores

to either directly mask the output space or as a margin for

the cosine similarity between visual features and compo-

sitional embeddings during training. Our experiments on

two standard CZSL benchmarks show that all the meth-

ods suffer severe performance degradation when applied

in the open world setting. While our simple CZSL model

achieves state-of-the-art performances in the closed world

scenario, our feasibility scores boost the performance of

our approach in the open world setting, clearly outper-

forming the previous state of the art. Code is available at:

https://github.com/ExplainableML/czsl.

1. Introduction

The appearance of an object in the visual world is deter-

mined by its state. A pureed tomato looks different from a

wet tomato despite the shared object, and a wet tomato looks

different from a wet dog despite the shared state. In Com-

positional Zero-Shot Learning (CZSL) [20, 21, 27, 17] the

goal is to learn a set of states and objects while generalizing

to unseen compositions.

Current benchmarks in CZSL study this problem in a

closed space, assuming the knowledge of unseen compo-

sitions that might arise at test time. For example, the widely

adopted MIT states dataset [13] contains 28175 possible

compositions (in total 115 states and 245 objects), but the

test time search space is limited to 1662 compositions (1262

seen and 400 unseen), covering less than 6% of the whole

compositional space. This restriction on the output space is

a fundamental limitation of current CZSL methods.

1First and second author contributed equally.
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Figure 1. In closed world CZSL, the search space is assumed to be

known a priori, i.e. seen (yellow) and unseen (purple) composi-

tions are available during training/test. In our open world scenario,

no limit on the search space is imposed. Hence, the model has to

figure out implausible compositions (pink) and discard them.

In this work, we propose the more realistic Open World

CZSL (OW-CZSL) task (see Figure 1), where we impose

no constraint on the test time search space, causing the

current state-of-the-art approaches to suffer severe perfor-

mance degradation. To tackle this new task, we propose

Compositional Cosine Logits (CompCos), a model where

we embed both images and compositional representations

into a shared embedding space and compute scores for each

composition with the cosine similarity. Moreover, we treat

less feasible compositions (e.g. ripe dog) as distractors that

a model needs to eliminate. For this purpose, we use simi-

larities among primitives to assign a feasibility score to each

unseen composition. We then use these scores as margins

in a cross-entropy loss, showing how the feasibility scores

enforce a shared embedding space where unfeasible distrac-

tors are discarded, while visual and compositional domains

are aligned. Despite its simplicity, our model surpasses

the previous state-of-the-art methods on the standard CZSL

benchmark as well as in the challenging OW-CZSL task.

Our contributions are as follows: (1) A novel problem

formulation, Open World Compositional Zero-Shot learn-

ing (OW-CZSL) with the most flexible search space in terms

of seen/unseen compositions; (2) CompCos, a novel model

to solve the OW-CZSL task based on cosine logits and a
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projection of learned primitive embeddings with an inte-

grated feasibility estimation mechanism; (3) A significantly

improved state-of-the-art performance on MIT states [13]

and UT Zappos [34, 35] both on the existing benchmarks

and the newly proposed OW-CZSL setting.

2. Related works

Compositional Zero-Shot Learning. Early vision works

encode compositionality with hierarchical part-based mod-

els, to learn robust and scalable object representations

[24, 23, 6, 38, 25, 28]. More recently, compositionality has

been widely considered in multiple tasks such as composi-

tional reasoning for visual question answering [14, 16, 12]

and modular image generation [37, 30, 26].

In this work, we focus on Compositional Zero-Shot

Learning (CZSL) [20]. Given a training set containing a set

of state-object compositions, the goal of CZSL is to recog-

nize unseen compositions of these states and objects at test

time. Some approaches address this task by learning ob-

jects and states classifier in isolation and composing them to

build the final recognition model. In this context, [4] trains

an SVM classifier for seen compositions and infers class

weights for new compositions through a Bayesian frame-

work. LabelEmbed [20] learns a transformation network on

top of pretrained state and object classifiers. [21] proposes

to encode objects as vectors and states as linear operators

that change this vector. Similarly, [17] enforces symmetries

in the representation of objects given their state transfor-

mations. Recently, [27] proposed a modular network where

states and objects are simultaneously encoded. The network

blocks are then selectively activated by a gating function,

taking as input an object-state composition.

All of these works assume that the training and test-

time compositions are known a priori. We show that re-

moving this assumption causes severe performance degra-

dation. Furthermore, we propose the first approach for

Open World CZSL. There are some similarities between

our model and [20] (i.e. primitive representations are con-

catenated and projected in a shared visual-semantic space).

However, our loss formulation leads to significant improve-

ments in the Open World CZSL results. More importantly,

our approach is the first to estimate the feasibility of each

composition and exploits this information to isolate/remove

possible distractors in the shared output space.

Open World Recognition. In our open world setting, all

the combinations of states and objects can form a valid com-

positional class. This is different from an alternate def-

inition of Open World Recognition (OWR) [2] where the

goal is to dynamically update a model trained on a subset

of classes to recognize increasingly more concepts as new

data arrives. Our definition of open world is related to the

open set zero-shot learning (ZSL) [33] scenario in [7, 8],

proposing to expand the output space to include a very large

vocabulary of semantic concepts.

Our problem formulation and approach are close in spirit

to that of [8] since both works consider the lack of con-

straints in the output space for unseen concepts as a require-

ment for practical (compositional) ZSL methods. However,

there are fundamental differences between our work and

[8]. Since we consider the problem of CZSL, we have ac-

cess to images of all primitives during training but not all

their possible compositions. This implies that we can use

the knowledge obtained from the visual world to model the

feasibility of compositions and modifying the representa-

tions in the shared visual-compositional embedding space.

We explicitly model the feasibility of each unseen compo-

sition, incorporating this knowledge into training and test.

3. Compositional Cosine Logits

3.1. (OW)CZSL Task Definition

Compositional zero-shot learning (CZSL) aims to pre-

dict a composition of multiple semantic concepts in images.

Let us denote with S the set of possible states, with O the

set of possible objects, and with C = S × O the set of all

their possible compositions. T = {(xi, ci)}
N
i=1 is a training

set where xi ∈ X is a sample in the input (image) space X
and ci ∈ Cs is a composition in the subset Cs ⊂ C. T is

used to train a model f : X → Ct predicting combinations

in a space Ct ⊆ C where Ct may include compositions that

are not present in Cs (i.e. ∃c ∈ Ct ∧ c /∈ Cs).

The CZSL task entails different challenges depending on

the extent of the target set Ct. If Ct is a subset of C and

Ct ∩ Cs ≡ ∅, the task definition is of [20], where the model

needs to predict only unseen compositions at test time. In

case Cs ⊂ Ct we are in the generalized CZSL scenario, and

the output space of the model contains both seen and unseen

compositions. Similarly to the standard generalized zero-

shot learning [33], this scenario is more challenging due to

the natural prediction bias of the model in Cs, seen during

training. Most recents works on CZSL consider the gener-

alized scenario [27, 17], and the set of unseen compositions

in Ct is assumed to be known a priori, with Ct ⊂ C.

In this work, we take a step further, analyzing the case

where the output space of the model is the whole set of

possible compositions Ct ≡ C, i.e. Open World Composi-

tional Zero-shot Learning (OW-CZSL). Note that this task

presents the same challenges of the generalized case while

being far more difficult since i) |Ct| ≫ |Cs|, thus it is hard

to generalize from a small set of seen to a very large set

of unseen compositions; and ii) there are a large number of

distractor compositions in Ct, i.e. compositions predicted

by the model but not present in the actual test set that can

be close to other unseen compositions, hampering their dis-

criminability. We highlight that, despite being similar to
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Figure 2. Compositional Cosine Logits (CompCos). Our approach embeds an image (top) and state-object compositions (bottom) into a

shared semantic space defined by the cosine-similarity between image features and composition embeddings. In the open world model, we

estimate a feasibility score for each of the unseen compositions, using the relation between states, objects, and the training compositions.

The feasibility scores are injected to the model either by removing less feasible compositions (e.g. ripe dog) from the output space (bottom,

black slice) or by adding a bias to the cosine similarities computed during training (top, purple slices).

Open Set Zero-shot Learning [8], we do not only consider

objects but also states. Therefore, this knowledge can be ex-

ploited to identify unfeasible distractor compositions (e.g.

rusty pie) and isolate them. Figure 2 shows an overview of

our approach for both closed and open world scenarios.

3.2. CompCos: A Closed World Model

In this section, we focus on the closed world setting,

where Cs ⊂ Ct ⊂ C. Since in this scenario |Ct| ≪ |C|
and the number of unseen compositions is usually lower

than the number of seen ones, this problem presents several

challenges. In particular, while learning a mapping from

the visual to the compositional space, the model needs to

avoid being overly biased toward seen class predictions. In-

spired by incremental learning [11] and generalized few-

shot learning [9], we reduce this problem by replacing the

logits of the classification layer with cosine similarities be-

tween the image features and the composition embeddings

in the shared embedding space:

f(x) = argmax
c∈Ct

cos(ω(x), φ(c)) (1)

where ω : X → Z is the mapping from the image space to

the shared embedding space Z ∈ R
d and φ : C → Z em-

beds a composition to the same space. cos(y, z) = y⊺z
||y|| ||z||

is the cosine similarity among the two embeddings. As

sketched Figure 2 (left), the visual embedding ω (green

block) maps an image to the shared embedding space, while

states (red) and objects (blue) embeddings, are embedded to

the shared space by φ (purple block).

Visual embedding. We use a standard deep neural network,

e.g. ResNet-18 [10], with an additional embedding function

ω mapping, the feature extracted from the backbone to Z .

The embedding function is a simple 2-layer MLP, where

dropout [29], LayerNorm [1] and a ReLU non-linearity [22]

are applied after the first layer. During training, we freeze

the main backbone, updating only the final MLP.

Composition embedding. The function ϕ : S ∪ O → R
d

maps the primitives, i.e. objects and states, into their cor-

responding embedding vectors. The embedding of a given

composition c = (s, o) is a simple linear projection of the

embeddings of its primitives:

φ(c) = [ϕ(s) ϕ(o)]⊤W

with W ∈ R
2d×d, where we consider Z ∈ R

d for simplic-

ity. We chose a linear embedding function since we found

it works well in practice. Moreover, it applies a strong con-

straint to the compositional space, making the embedding

less prone to overfitting and more suitable for generalizing

in a scenario where we might have |Ct| ≫ |Cs|. During

training, we update both the embedding matrix W and the

atomic embeddings of ϕ, after initializing the latter with

word embeddings.

Objective function. We define a cross-entropy loss on top

of the cosine logits:

L = −
1

|T |

∑

(x,c)∈T

log
e

1

T
·p(x,c)

∑

y∈Cs e
1

T
·p(x,y)

(2)

where T is a temperature value that balances the prob-

abilities for the cross-entropy loss [36] and p(x, c) =
cos(φ(x), ω(c)). In the following we discuss how to extend

our Compositional Cosine Logits (CompCos) model from

the closed to the more challenging open world scenario.
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3.3. CompCos: from Closed to Open World

Although CompCos is an effective CZSL algorithm in

the standard closed world scenario, performing well on the

OW-CZSL requires tackling different challenges, such as

avoiding distractors. We consider distractors as less-likely

concepts, e.g. pureed dog, hairy tomato, and argue that the

similarity among objects and states can be used as a proxy

to estimate the feasibility of each composition. The least

feasible compositions can then be successfully isolated, im-

proving the representations of the feasible ones.

Estimating Compositional Feasibility. Let us consider

two objects, namely cat and dog. We know, from our train-

ing set, that cats can be small and dogs can be wet since

we have at least one image for each of these compositions.

However, the training set may not contain images for wet

cats and small dogs, which we know are feasible in real-

ity. We conjecture, that similar objects share similar states

while dissimilar ones do not. Hence, it is safe to assume that

the states of cats can be transferred to dogs and vice-versa.

With this idea in mind, given a composition c = (s, o)
we define its feasibility score with respect to the object o as:

ρobj(s, o) = max
ô∈Os

cos(ϕ(o), ϕ(ô)) (3)

with Os being the set of objects associated with state s in

the training set Cs, i.e. Os = {o|(s, o) ∈ Cs}. Note, that

the score is computed as the cosine similarity between the

object embedding and the most similar other object with the

target state, thus the score is bounded in [−1, 1]. Training

compositions get assigned the score of 1. Similarly, we de-

fine the score with respect to the state s as:

ρstate(s, o) = max
ŝ∈So

cos(ϕ(s), ϕ(ŝ)) (4)

with So being the set of states associated with the object o
in the training set Cs, i.e. So = {s|(s, o) ∈ Cs}.

The feasibility score for a composition c = (s, o) is then:

ρ(c) = ρ(s, o) = g(ρstate(s, o), ρobj(s, o)) (5)

where g is a mixing function, e.g. max operation (g(x, y) =
max(x, y)) or the average (g(x, y) = (x + y)/2), keeping

the feasibility score bounded in [−1, 1]. Note that, while we

focus on extracting feasibility from the visual information,

external knowledge (e.g. knowledge bases [18], language

models [31]) can be complementary resources.

Exploiting Compositional Feasibility. A first simple strat-

egy is applying a threshold on the feasibility scores, con-

sidering all compositions above the threshold as valid and

others as distractors (e.g. ripe dog, as shown in the black

pie slice of Figure 2):

fHARD(x) = argmax
c∈Ct,ρ(c)>τ

cos(ω(x), φ(c)) (6)

where τ is the threshold, tuned on a validation set. While

this strategy is effective, it might be too restrictive in prac-

tice. For instance, tomatoes and dogs being far in the em-

bedding space does not mean that a state for dog, e.g. wet,

cannot be applied to a tomato. Therefore, considering the

feasibility scores as the golden standard may lead to exclud-

ing valid compositions. To sidestep this issue, we propose

to inject the feasibility scores directly into the training pro-

cedure. We argue that doing so can enforce separation be-

tween most and least feasible unseen compositions in the

shared embedding space.

To inject the feasibility scores ρ(c) directly within our

objective function, we can define:

Lf = −
1

|T |

∑

(x,c)∈T

log
e

1

T
·pf (x,c)

∑

y∈C e
1

T
·pf (x,y)

(7)

with:

pf (x, c) =

{

cos(ω(x), φ(c)) if c ∈ Cs

cos(ω(x), φ(c))− αρ(c) otherwise
(8)

where ρ(c) are used as margins for the cosine similarities,

and α > 0 is a scalar factor. With Eq. (7) we include the full

compositional space while training with the seen composi-

tions data to raise awareness of the margins between seen

and unseen compositions directly during training.

Note that, since ρ(ci) 6= ρ(cj) if ci 6= cj and ci, cj /∈ Cs,

we have a different margin, i.e. −αρ(c), for each unseen

composition c. This is because most feasible compositions

should be closer to the seen ones (to which the visual em-

bedding network is biased) than less feasible ones. By do-

ing that, we force the network to push the representation of

less feasible compositions away from the representation of

compositions in Cs in Z . On the other hand, the less pe-

nalized feasible compositions benefit from the updates pro-

duced for seen training compositions containing the same

primitives. More feasible compositions will then be more

likely to be predicted by the model, even without being

present in the training set. As an example (Figure 2, top

part), the unfeasible composition ripe dog is more penal-

ized than the feasible wet tomato during training, with the

outcome that the optimization procedure does not force the

model to reduce the region of wet tomato, while reducing

the one of ripe dog (top-right pie).

We highlight that in this stage we do not explicitly bound

the revised score pf (c) to [−1, 1]. Instead, we let the net-

work implicitly adjust the cosine similarity scores during

training. We also found it beneficial to linearly increase α
till a maximum value as the training progresses, rather than

keeping it fixed. This permits us to gradually introduce the

feasibility margins within our objective while exploiting im-

proved primitive embeddings to compute them.
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4. Experiments

Datasets. We experiment with two standard CZSL bench-

mark datasets. MIT states [13] contains 53K images of

245 objects in 115 possible states. We adopt the standard

split from [27]. For the closed world experiments, the out-

put space contains 1262 seen and 300/400 unseen (valida-

tion/test) compositions. For the open world scenario, we

consider all possible 28175 compositions as present in the

search space. Note, that 26114 out of 28175 (∼93%) are

not present in any splits of the dataset but are included in

our open world setting.

UT Zappos [34, 35] contains 12 different shoe types (ob-

jects) and 16 different materials (states). In the closed world

setting, the output space is constrained to the 83 seen and to

additional 15 and 18 unseen compositions for validation and

test respectively. Although 76 out of 192 possible composi-

tions (∼40%) are not in any of the splits of the dataset, we

consider them in our open world setting.

Metrics. For the primitives, we report the object and state

classification accuracies. Since we focus on the generalized

scenario and the model has an inherent bias for seen com-

positions, we follow the evaluation protocol from [27]. We

consider the performance of the model with different bias

factors for the unseen compositions, reporting the results as

best accuracy on only images of seen compositions (best

seen), best accuracy on only unseen compositions (best un-

seen), best harmonic mean (best HM) and Area Under the

Curve (AUC) for seen and unseen accuracies at bias values.

Benchmark and Implementation Details. As in [27, 17]

our image features are extracted from a ResNet18 pre-

trained on ImageNet [5] and we learn the visual embedding

module ω on top of these features. We initialize the em-

bedding function ϕ with 300-dimensional word2vec [19]

embeddings for UT Zappos and with 600-dimensional

word2vec+fastext [3] embeddings for MIT states, follow-

ing [32], keeping the same dimensions for the shared em-

bedding space Z . We train both ω (ϕ and W ) and φ using

Adam [15] optimizer with a learning rate and a weight de-

cay set to 5 ·10−5. The margin factor α and the temperature

T are set to 0.4 and 0.05 respectively for MIT states and

1.0 and 0.02 for UT Zappos. We linearly increase α from

0 to the previous values during training, reaching the val-

ues after 15 epochs. We consider the mixing function g as

the average to merge state and object feasibility scores and

fHARD as predictor for OW-CZSL, unless otherwise stated.

We compare with four state-of-the-art methods, At-

tribute as Operators (AOP) [21], considering objects as vec-

tors and states as matrices modifying them [21]; LabelEm-

bed+ (LE+) [20, 21] training a classifier merging state and

object embeddings with an MLP; Task-Modular Neural

Networks (TMN) [27], modifying the classifier through a

gating function receiving as input the queried stat-object

composition; and SymNet [17], learning object embeddings

showing symmetry under different state-based transforma-

tions. We train each model with their default hyperparame-

ters, reporting the closed and open world results of the mod-

els with the best AUC on the validation set.

4.1. Comparing with the State of the Art

We compare CompCos and the state of the art in the stan-

dard closed world and the proposed open world setting.

Closed World Results. The results analyzing the perfor-

mance of CompCos in the standard closed world scenario

are reported on the left side of Table 1 for the MIT states and

UT Zappos test sets. Although being a substantially sim-

ple approach, our CompCos achieves remarkable results.

On MIT states our model either outperforms or is compa-

rable to all competitors in all metrics. In particular, while

obtaining a comparable best harmonic mean with SymNet,

it achieves 4.5 AUC, which is a significant improvement

over 3.0 from SymNet. This highlights how our model is

more robust to the bias on unseen test compositions. Com-

pared to the closest method to ours, LabelEmbed+ (LE+),

CompCos shows clear advantages for all metrics (from 2 to

4.5 AUC, and from 10.7% to 16.4% on the best harmonic

mean), underlying the impact of our embedding functions

and the cross-entropy loss on cosine logits.

On UT Zappos, our model is superior to almost all meth-

ods (except TMN in two cases). It is particularly interest-

ing how CompCos surpasses AoP, LE+, and SymNet with

more than 2% on best harmonic mean and at least by 2.8
in AUC. In comparison with TMN, while achieving a lower

best harmonic mean (-1.9%) and a slightly lower AUC (-

0.6), it achieves the best unseen accuracy (+2.5%) and im-

proves of 4% the accuracy in recognizing each primitive in

isolation. These results show that CompCos is less sensitive

to the value of the bias applied to the unseen compositions

in the generalized scenario, thanks to the use of cosine sim-

ilarity as prediction score. We would like to highlight that

our model uses a magnitude lower trainable parameters, e.g.

0.8M vs 2.3M for TMN, to achieve these results.

Open World Results. The results on the challenging OW-

CZSL setting are reported on the right side of Table 1. As

expected, the first clear outcome is the severe decrease in

performance of every method. In fact, the OW-CZSL per-

formances (e.g. best unseen, best HM, and AUC) are less

than half of CZSL performances in MIT states. The largest

decrease in performance is on the best unseen metric, due

to the presence of a large number of distractors. As an ex-

ample, LE+ goes from 20.1% to 2.5% of best unseen accu-

racy and even the previous state of the art, SymNet, loses

18.2%, confirming that the open world scenario is signifi-

cantly more challenging than the closed world setting.

In the OW-CZSL setting, our model (CompCos) is more

robust to the distractors, due to the injected feasibility-based

margins which shape the shared embedding space during
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Method

Closed World Open World

MIT states UT Zappos MIT states UT Zappos

Sta. Obj. S U HM auc Sta. Obj. S U HM auc Sta. Obj. S U HM auc Sta. Obj. S U HM auc

AoP[21] 21.1 23.6 14.3 17.4 9.9 1.6 38.9 69.9 59.8 54.2 40.8 25.9 15.4 20.0 16.6 5.7 4.7 0.7 25.7 61.3 50.9 34.2 29.4 13.7

LE+[20] 23.5 26.3 15.0 20.1 10.7 2.0 41.2 69.3 53.0 61.9 41.0 25.7 10.9 21.5 14.2 2.5 2.7 0.3 38.1 68.2 60.4 36.5 30.5 16.3

TMN[27] 23.3 26.5 20.2 20.1 13.0 2.9 40.8 69.5 58.7 60.0 45.0 29.3 6.1 15.9 12.6 0.9 1.2 0.1 14.6 61.5 55.9 18.1 21.7 8.4

SymNet[17] 26.3 28.3 24.2 25.2 16.1 3.0 41.3 68.6 49.8 57.4 40.4 23.4 17.0 26.3 21.4 7.0 5.8 0.8 33.2 70.0 53.3 44.6 34.5 18.5

CompCos 27.9 31.8 25.3 24.6 16.4 4.5 44.7 73.5 59.8 62.5 43.1 28.7 18.8 27.7 25.4 10.0 8.9 1.6 35.1 72.4 59.3 46.8 36.9 21.3

Table 1. Closed and Open World CZSL results on MIT states and UT Zappos. We measure states (Sta.) and objects (Obj.) accuracy on the

primitives, best seen (S) and unseen accuracy (U), best harmonic mean (HM), and area under the curve (auc) on the compositions.

Effect of the Margins Seen Unseen HM AUC

CompCosCW 28.0 6.0 7.0 1.2

CompCos α = 0 25.4 10.0 9.7 1.7

+ α > 0 27.0 10.9 10.5 2.0

+ warmup α 27.1 11.0 10.8 2.1

Effect of Primitives Seen Unseen HM AUC

CompCos

ρstate 26.6 10.2 10.2 1.9

ρobj 27.2 10.0 9.9 1.9

max(ρstate, ρobj) 27.2 10.1 10.1 2.0

(ρstate + ρobj)/2 27.1 11.0 10.8 2.1

Table 2. Results on MIT states validation set for different ways of

applying the margins (top) and different ways of computing the

feasibility scores (bottom) for CompCos with f as predictor.

training. This is clear in MIT states, where CompCos out-

performs the state of the art for all metrics. Remarkably,

it obtains double the AUC of the best competitor, SymNet,

going from 0.8 to 1.6 with a 3.1% improvement on the best

HM and 3.0% on best unseen accuracy.

In UT Zappos the performance gap with the other ap-

proaches is more nuanced. This is because the vast majority

of compositions in UTZappos are feasible, thus it is hard to

see a clear gain from injecting the feasibility scores into the

training procedure. Nevertheless, CompCos improves by

2.8 in AUC and 2.4 in best unseen accuracy over SymNet,

showing the highest results according to all compositional

metrics but the seen accuracy, where it performs compara-

bly to LE+. This is expected, since the output space of all

previous works is limited to seen classes during training,

thus the models are discriminative for seen compositions.

4.2. Ablation studies

We investigate the impact of the feasibility-based mar-

gins, how we obtain them (without fHARD), and the ben-

efits of limiting the output space during inference using

fHARD. We perform our analyses on MIT states’ validation

set. Note that, in the tables, CompCosCW is the closed world

CompCos model, as described in Sec. 3.2.

Importance of the feasibility-based margins. We check

the impact of including all compositions in the objective

function (without any margin) and of including the feasibil-

ity margin but without any warmup strategy for α.

As the results in Table 2 (Top) shows, including all un-

seen compositions in the cross-entropy loss without any

margin (i.e. α = 0) increases the best unseen accuracy

by 4% and the AUC by 0.5. This is a consequence of the

training procedure: since we have no positive examples for

unseen compositions, including unseen compositions dur-

ing training makes the network push their representation far

from seen ones in the shared embedding space. This strat-

egy regularizes the model in presence of a large number of

unseen compositions in the output space. Note, that this

problem is peculiar in the open world scenario since in the

closed world the number of seen compositions is usually

larger than the unseen ones. The CompCos (α = 0) model

performs worse than CompCosCW on seen compositions,

as the loss treats all unseen compositions equally.

Results increase if we include the feasibility scores dur-

ing training (i.e. α > 0). The AUC goes from 1.7 to 2.0,

with consistent improvements over the best seen and unseen

accuracy. This is a direct consequence of using the feasibil-

ity to separate the unseen compositions from the unlikely

ones. In particular, this brings a large improvement on Seen

and moderate improvements on both Unseen and HM.

Finally, linearly increasing α (i.e. warmup α) further im-

proves the harmonic mean due to both the i) improved mar-

gins that CompCos estimates from the updated primitive

embeddings and ii) the gradual inclusion of these margins in

the objective. This strategy improves the bias between seen

and unseen classes (as for the better on harmonic mean)

while slightly enhancing the discriminability on seen and

unseen compositions in isolation.

Effect of Primitives We can either use objects as in Eq. (3),

states as in Eq. (4)) or both as in Eq. (5) to estimate the fea-

sibility score for each unseen composition. Here we con-

sider all these choices, showing their impact on the results

in Table 2 (Bottom), with f as predictor.

The results show that computing feasibility on the prim-

itives alone is already beneficial (achieving an AUC of 1.9)

since the dominant states like caramelized and objects like

dog provide enough information to transfer knowledge. In
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Mask Seen Unseen HM AUC

LE+ 14.8
3.1 3.2 0.3

✓ 5.0 4.6 0.5

TMN 15.9
1.3 1.7 0.1

✓ 4.1 4.1 0.4

SymNet 23.6
7.9 7.6 1.2

✓ 7.9 7.7 1.2

CompCosCW 28.0
6.0 7.0 1.2

✓ 8.1 8.7 1.6

CompCos 27.1
11.0 10.8 2.1

✓ 11.2 11.0 2.2

Table 3. Results on MIT states validation set for applying our

feasibility-based binary masks (fHARD) on different models.

particular, computing the scores starting from state informa-

tion (ρstate) brings good best unseen and HM results while

under-performing on the best seen accuracy. On the other

hand, using similarities among objects (ρobj) performs well

on the seen classes while achieving slightly lower perfor-

mances on unseen ones and HM.

Nevertheless introducing both states and objects give the

best result at AUC of 2.1 as it combines the best of both.

Merging objects and states scores through their maximum

(ρmax) maintains the higher seen accuracy of the object-

based scores, with a trade-off between the two on unseen

compositions. However, merging objects and states scores

through their average brings to the best performance over-

all, with a significant improvement on unseen compositions

(almost 1%) as well as the harmonic mean. We ascribe this

behavior to the fact that, with the average, the model is less-

prone to assign either too low or too high feasibility scores

for the unseen compositions, smoothing their scores. As a

consequence, more meaningful margins are used in Eq. (7)

and thus the network achieves a better trade-off between

discrimination capability on the seen compositions and bet-

ter separating them from unseen compositions (and distrac-

tors) in the shared embedding space.

Effect of Masking. We consider mainly two ways of us-

ing the feasibility scores: during training as margins and/or

during inference as masks on the predictions. We analyze

the impact of applying the mask during inference, i.e. using

as prediction function Eq. (6) in place of Eq. (1), with the

threshold τ computed empirically. We run this study on our

closed world model CompCosCW, our full model CompCos

and three CZSL baselines, LE+, TMN, and SymNet. Note

that, since seen compositions are not masked, best seen per-

formances are shared across a single model.

As shown in Table 3, if we apply binary masks on top

of CompCosCW the AUC increases by 0.5, best harmonic

mean by 1.7%, and best unseen accuracy by 2.1%. This is

because our masks filter out the less feasible compositions,

rather than just restricting the output space. At the same

time, the improvements are not as pronounced for the full

CompCos model. Indeed, including the feasibility scores

as margins during training makes the model already robust

to the distractors. The hard masking still provides a slight

benefit over all compositional metrics, with an 11% on ac-

curacy on unseen compositions. This confirms the impor-

tance of restricting the search space under a criterion taking

into account the probability of a composition of being a dis-

tractor, such as our feasibility scores.

An interesting observation is that applying our

feasibility-based binary masks on top of other approaches

(i.e. LE+, TMN, and SymNet) is beneficial. SymNet, mod-

eling states and objects separately, sees a minor increase in

performance in HM while maintaining the AUC and unseen

accuracy. However, LE+ and TMN, which learn a joint

compatibility between compositions and images, see a big

increase in performance with the introduction of feasibility.

TMN improves from 0.1 to 0.4 in the AUC while seeing

a big increase in the HM from 1.7 to 4.1. Similarly, LE+

improves from 0.3 AUC to 0.5 with a significant increase

in the HM, from 3.2 to 4.6.

4.3. Qualitative results

We show example composition predictions for a set of

images of our CompCosCWand our CompCos in the open

world setting. Furthermore, we show examples of most-

and least-feasible compositions determined by our model.

Compositions Corrected due to Feasibility Scores. We

qualitatively analyze the reasons for the improvements of

CompCos over CompCosCW, by looking at the example

predictions of both models on simple sample images of

MIT states. We compare predictions on samples where the

closed world model is “distracted” by a distractor while the

open world model is able to predict the correct class label.

As shown in Figure 3, the closed world model is gener-

ally not capable of dealing with the presence of distractors.

For instance, there are cases where the object prediction

is correct (e.g. broken dog, molten chicken, unripe boul-

der, mossy bear, rusty pie) but the associated state is not

only wrong but also making the compositions unfeasible.

In other cases, the state prediction is almost correct (e.g.

cracked fan,barren wave, inflated eggs) but the associated

object is unrelated, making the composition unfeasible. All

these problems are less severe in our full CompCos model

since our feasibility-driven objective helps in isolating the

implausible distractors in the shared embedding space, re-

ducing the possibility to predict them.

Discovered Most and Least Feasible Compositions. The

most crucial advantage of our method is its ability to esti-

mate the feasibility of each unseen composition, to later in-

ject these estimates into the learning process. Our assump-

tion is that our procedure described in Section 3.3 is robust
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CompCosCW  

CompCos

broken dog

small dog

rusty pie

browned pie

barren wave

windblown sand

mossy bear

large bear

cracked fan

broken mirror

inflated eggs

huge balloon

molten chicken

cooked chicken

unripe boulder

mossy boulder

CompCosCW  

CompCos

broken laptop

old laptop

fresh beach

sunny beach

peeled copper

thick necklace

burnt iguana

weathered concrete

coiled bread

sliced bread

frozen gemstone

melted plastic

engraved cable

engraved sword

steaming shoes

crumpled bag

Figure 3. Examples correct predictions of CompCos in the OW-CZSL scenario when the CompCosCW fails. The first row shows the

predictions of the closed world model, the bottom row shows the results of CompCos. The images are randomly selected.

Compositions

Most Feasible (Top-1) Least Feasible (Bottom-1)

browned tomato short lead

caramelized potato cloudy gemstone

thawed meat standing vegetable

small dog full nut

large animal blunt milk

Objects States

Most Feasible (Top-3) Least Feasible (Bottom-3)

tomato browned, peeled, diced tight, full, standing

dog small, old, young fallen, toppled, standing

cat wrinkled, huge, large viscous, smooth, runny

laptop small, shattered, modern cloudy, sunny, dull

camera tiny, huge, broken diced, caramelized, cloudy

Table 4. Unseen compositions wrt their feasibility scores (Top:

Top-5 compositions on the left, Least-5 on the right; Bottom: Top-

3 highest and Bottom-3 lowest feasible state per object.

enough to model which compositions should be more fea-

sible in the compositional space and which should not, iso-

lating the latter in the shared embedding space. We would

like to highlight that here we are focusing mainly on visual

information to extract the relationships. This information

can in principle be coupled with knowledge bases (i.e. [18])

and language models (i.e. [31]) to further refine the scores.

Table 4 (Top) shows qualitative examples of the most and

least feasible compositions discovered by CompCos. As an

example, it correctly ranks browned tomato and small dog

as one of the most feasible compositions, while full nut and

blunt milk among the least feasible ones. Since the dataset

has a lot of food classes, we see that the top and bottom are

mostly populated by them. However, the presence of rele-

vant and irrelevant states with these objects is promising and

shows the potential of our feasibility estimation strategy.

Table 4 (Bottom) shows the top-3 most feasible compo-

sitions and bottom-3 least feasible compositions given five

randomly selected objects. These objects specific results

show a tendency of the model to relate feasibility scores

to the subgroups of classes. For instance, cooking states

are considered as unfeasible for standard objects (e.g. diced

camera) as well as atmospheric conditions (e.g. sunny lap-

top). Similarly, states usually associated with substances

are considered unfeasible for animals (e.g. runny cat). At

the same time, size and ages are mostly linked with animals

(e.g. young dog) while cooking states are correctly associ-

ated with food (e.g. diced tomato). Interestingly, the top

states for cat are all present with dog as seen compositions,

thus the similarities between the two classes has been used

to transfer these states from dog to cat, following Eq. (3).

5. Conclusions

In this work, we propose a new benchmark for CZSL

that extends the problem from the closed world to an open

world where all the combinations of states and objects could

potentially exist. We show that state-of-the-art methods fall

short in this setting as the number of unseen compositions

significantly increases. We argue that not all combinations

are valid classes but it is unrealistic to assume that test set

pairs are the only valid compositions. We propose a way to

model the feasibility of a state-object composition by using

the visual information available in the training set. This fea-

sibility is independent of an external knowledge base and

can be directly incorporated in the optimization process.

We propose a novel model, CompCos, that incorporates this

feasibility and achieves state-of-the-art performance in both

closed and open world on two real-world datasets.
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