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Abstract

We propose D-RISE, a method for generating visual ex-

planations for the predictions of object detectors. Utiliz-

ing the proposed similarity metric that accounts for both

localization and categorization aspects of object detection

allows our method to produce saliency maps that show im-

age areas that most affect the prediction. D-RISE can be

considered “black-box” in the software testing sense, as it

only needs access to the inputs and outputs of an object

detector. Compared to gradient-based methods, D-RISE is

more general and agnostic to the particular type of object

detector being tested, and does not need knowledge of the

inner workings of the model. We show that D-RISE can be

easily applied to different object detectors including one-

stage detectors such as YOLOv3 and two-stage detectors

such as Faster-RCNN. We present a detailed analysis of the

generated visual explanations to highlight the utilization of

context and possible biases learned by object detectors.

1. Introduction

The field of object detection has experienced significant

gains in performance since the adoption of deep neural net-

works (DNNs) [9]. However, DNNs remain opaque tools

with a complex and unintuitive process of decision-making,

resulting in them being hard to understand, debug and im-

prove. A number of different explanation techniques of-

fer potential solutions to these issues. They have already

been shown to find biases in trained models [39], help debug

them [13] and increase user’s trust [34]. A popular approach

to explanation involves the use of attribution techniques

which produce saliency maps [20, 35], i.e., heatmaps rep-

resenting the influence different pixels have on the model’s

*Work completed while an intern at Adobe Research.

This work was partially supported by the DARPA XAI program.

Figure 1: D-RISE can highlight which regions of an image were

used by an object detector. Here we show outputs for a few cor-

responding images where importance increases from blue to red.

In these examples, D-RISE reveals things such as detectors often

looking outside bounding boxes to detect objects e.g., looking at

the ski poles to predict skis, or looking to a subset of regions within

the object e.g., looking at the Apple logo to predict laptop.

decision. Hitherto, these techniques have primarily focused

on the image classification task [27, ?, 34, 40, 44, 2, 42],

with few addressing other problems such as visual question

answering [25], video captioning [28, 3] and video activity

recognition [3]. In this work, we address the relatively un-

derexplored direction of generating saliency maps for object

detectors.

Unlike methods that explain the emerging patterns in the

learned weights or activations [4, 42, 22], attribution tech-

niques are usually tightly connected to the model’s design

and they rely on a number of assumptions about the model’s

architecture. For example, Grad-CAM [34] assumes that

each feature map correlates with some concept, and there-

fore, feature maps can be weighted with respect to the im-

portance of their concept for the output category. We show

that these assumptions might not hold for object detec-

tion models, resulting in failure to produce quality saliency

maps. Additionally, object detectors require explanations
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Figure 2: Our method D-RISE attempts to explain the detections (bounding-box+category) produced for this image by an object detector.

We convert target detections that need to be explained into detection vectors dt. We sample N binary masks, Mi, and run the detector on

the masked images to obtain proposals Dp. We compute pairwise similarities between targets and proposals to obtain weights for each

mask. Finally, the weighted sum of masks is computed to produce saliency maps. In classification, the ouput of the black-box model can

be directly used as mask weights.

not just for the categorization of a bounding box but also

for the location of the bounding box itself. For these rea-

sons, direct application of existing attribution techniques to

object detectors is infeasible.

We propose Detector Randomized Input Sampling for

Explanation, or D-RISE, the first method to produce

saliency maps for object detectors that is capable of explain-

ing both the localization and classification aspects of the

detection. D-RISE uses an input masking technique first

proposed by RISE [27], which enables explanation of the

more complex detection networks because it does not rely

on gradients or the inner workings of the underlying object

detector. However, the method in [27] is only applicable to

classification, not detection. D-RISE is a black-box method

and can be in principle applied to any object detector.

Explaining visual classifiers with saliency maps has al-

lowed researchers to investigate the localization abilities

implicitly learned by these models. Moreover, some works

have used explanations of visual classifiers for weakly-

supervised object localization [14, 24]. In object detection,

however, the localization decisions of the model are explicit

as they are expressed directly in the outputs of the model.

Therefore, one might assume that exploring spatial impor-

tance in this case is redundant, and that the model has al-

ready predicted bounding boxes around everything it deems

important. In our experiments with D-RISE, we observe

that DNN based object detectors also learn to utilize con-

textual regions outside of the box to detect objects. For in-

stance the last column in Fig. 1 shows how the tap helps

to localize the sink even when it is clearly outside the de-

tected box. In fact, the importance of contextual informa-

tion for object detection has long been established for both

humans [5, 23] and machines [36, 21]. Another reason for

studying an object detector’s saliency is the fact that not all

sub-regions within the object’s bounding box are equally

important. Some object parts are more discriminant, while

others may occur with objects of different categories, e.g.,

cat faces are highlighted as more important by the network

than its body (Fig. 1).

Our contributions can be summarized as follows:

• We propose D-RISE, a black-box attribution technique

for explaining object detectors via saliency maps, by

defining a detection similarity metric.

• We demonstrate generalizability of D-RISE by ex-

plaining two commonly used object detectors with

different architectural designs, namely one-stage

YOLOv3 [29] and two-stage Faster R-CNN [30].

• Using D-RISE, we systematically analyze potential

sources of errors and bias in commonly used object de-

tectors trained on the MS-COCO [17] dataset and dis-

cover common patterns in data learned by the model.

• We evaluate our method using automated metrics from

classification saliency and a user study. Additionally,

we propose an evaluation procedure that measures how

well the saliency method can discover deliberately in-

troduced biases in the model via synthetic markers.

Our method surpasses the classification baselines.
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2. Related Work

2.1. Object Detection

Object detectors can be divided into two groups: two-

stage detectors, with the Faster R-CNN [30] being the most

representative, and one-stage detectors, such as YOLO [29],

SSD [18] and CornerNet [16]. Two-stage detectors consist

of a region proposal stage, where a sparse set of regions

of interest (ROI) is selected, followed by a feature extrac-

tion stage for the subsequent classification of each candidate

ROI. One-stage methods do not perform ROI pooling and

instead use a single network to detect objects. Our saliency

technique is able to analyze both two-stage and single-stage

detectors (Faster R-CNN and YOLO, respectively).

Previous works on explaining DNN-based object detec-

tors include their feature space visualization [38], analyz-

ing the biases, such as pedestrians’ skin color [41]. Two

recent works have explored explainability using saliency

for SSD object detectors [37, 10]. These methods rely on

tailored white-box approaches in comparison to D-RISE,

which treats detectors as black boxes.

2.2. Visual Saliency Methods

Various visual grounding techniques retrospectively pro-

vide explainability to computer vision models after they

have been trained. Several saliency methods for classifica-

tion models have been proposed. A first group of methods

backpropagate an importance score through the layers of

the neural network from the model’s output to the individ-

ual pixels in the input, e.g. Gradients [35], Excitation Back-

prop [43] and Layer-wise Relevance Propagation [2]. These

methods are sometimes tailored to the model’s architecture,

i.e. they cannot be used for new network architectures with-

out implementing the propagation scheme for new layers.

Grad-CAM [34], a generalization of CAM [44], computes

the regular gradients up to a selected intermediate layer and

then combines them with the corresponding activations to

get a low-resolution saliency map. While, a recent version

of Grad-CAM has been proposed to study adversarial con-

text patches in single-shot object detectors [32], most work

has been on explaining classification results.

A second group of works perform specific perturbations

on image regions, such as occlusion, adding noise, inpaint-

ing, and blurring. After observing the effect of a perturba-

tion on the model’s output, the methods determine the im-

portance of the region that was perturbed [35, 27, 31, 19, ?,

6]. Specifically, Occlusion [42] blocks out square parts of

the image in a sliding window manner and captures the drop

in the class score to determine the importance. LIME [31]

approximates the deep model by a linear classifier, trains

it in the vicinity of the input point by using samples with

occluded superpixels and uses the learned weights as the

measure of superpixel importance. The Meaningful Pertur-

bation approach [8] and Real Time Image Saliency [6] opti-

mize the perturbation mask using gradient descent.1 Finally,

RISE [27] generates a set of random masks, applies the

classifier to masked versions of the input and uses the pre-

dicted class probabilities as weights, computing a weighted

sum of the masks as the saliency map. We use this mask-

ing technique to explain object detectors rather than image

classifiers. Since this and other saliency methods described

above cannot be directly applied to the detection task, our

work extends the prior state of the art by enabling detector

explanation. We describe key differences that have to be ad-

dressed for extending saliency methods to object detection

in the next section.

Black-box and white-box approaches have slightly dif-

ferent use cases. Black-box methods, while typically slower

at run time, can save developer time due to their higher gen-

eralizability and ease of application. They also enable anal-

ysis of proprietary models or APIs which cannot be studied

using white-box approaches. Arguably, black-box methods

are more intuitive, because they directly measure the effect

that input ablations have on the model, without relying on

heuristics such as rules for importance back-propagation.

On the other hand, faster white-box methods are more suit-

able for large scale and real-time applications.

Methods above can only explain a scalar value in the

model’s output. In case of image classification, it is the

class probability score that is used to either backpropagate

from (gradient methods) or to gauge the effect of image

modification (perturbation methods). In addition to class

probabilities, an object detector has to predict the bounding

box location of an object, and that also requires explana-

tions. Moreover, it produces multiple detection proposals

per image, which can greatly differ for modified versions of

the image. These distinctions make the direct application

of existing classification saliency methods infeasible. We

show that gradient based methods do not produce quality

saliency maps if used to explain a probability score in one

of the detection vectors. In our work we address these is-

sues, making it possible to produce saliency maps for object

detectors.

3. Method

Given an h-by-w image I , a DNN detector model f , and

an object detection d specified by a bounding box and a

category label, our goal is to produce a saliency map S to

explain the detection. The map consists of h-by-w values

indicating the importance of each pixel in I in influencing f

1These two works also define themselves as black-box methods, how-

ever their definition of “black-box” is different from ours. While their

methods can be applied to any differentiable image classification network,

they still require access to model’s weights and gradients for gradient de-

scent optimization. Along with [42, 31, 27], our work uses a stricter def-

inition of “black-box”, entirely prohibiting access to any of the model’s

internal parameters.
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to predict d. We propose D-RISE to solve this problem in a

black-box manner, i.e., without access to f ’s weights, gradi-

ents or architecture. Our method is inspired by the random-

ized perturbations (masks) applied to the image by the RISE

model to explain object classifiers, except that we leverage

the random-masking idea to explain object detectors. The

main idea is to measure the effect of masking randomized

regions on the predicted output, using changes in f ’s output

to determine the importance. Figure 2 shows an overview

of our approach.

Existing approaches for image classification saliency

cannot be directly applied to the object detection task. They

assume a single categorical model output, while object de-

tectors produce a multitude of detection vectors that en-

code class probabilities, localization information and addi-

tional information such as an objectness score. To apply

random masking to detectors, we incorporate localization

and objectness scores into the process of generating detec-

tor saliency maps.

Most detector networks, including Faster R-CNN and

YOLO, produce a large number of bounding box proposals

which are subsequently refined using confidence threshold-

ing and non-maximum suppression to leave a small number

of final detections. We denote such bounding box proposals

in the following manner:

di =
[

Li, Oi, Pi

]

(1)

=
[

(xi
1, y

i
1, x

i
2, y

i
2), Oi, (p

i
1, . . . , p

i
C)

]

(2)

Each proposal is encoded into a detection vector di consist-

ing of

• localization information Li, defining bounding box

corners (xi
1, y

i
1) and (xi

2, y
i
2),

• objectness score Oi ∈ [0, 1], representing the proba-

bility that bounding box Li contains an object of any

class (if the detector does not produce such a score this

term may be ignored), and

• classification information Pi — a vector of probabil-

ities (pi1, . . . , p
i
C) representing the probability that re-

gion Li belongs to each of C classes.

We construct a detection vector for any given bounding box

and its label by taking the corners of the bounding box, set-

ting Oi to 1 and using a one-hot vector for the probabilities.

Given an object detector f , an image I and a categorized

bounding box (not necessarily produced by the model) we

generate a saliency map that would highlight regions impor-

tant for the model in order to predict such a bounding box.

If the detection actually comes from the model, we treat the

generated heatmap as an explanation for model’s decision.

Following the perturbation-based attribution paradigm, we

measure the importance of a region by observing the effect

that perturbation of this region has on the detector’s output.

In contrast with classification models, object detection

models are designed and trained with regression objectives

and do not have a single proposal directly corresponding to

any arbitrary bounding box with particular coordinates. In-

stead, many proposals are produced, with bounding boxes

that differ and overlap to varying degrees with the bounding

box provided as input to the explanation algorithm. There-

fore, for object detection it is important to determine not

just how we measure the disturbance in the output but also

where we measure it in terms of which disturbances do we

select from among the proposals produced by a network.

To measure the disturbance in the output (the how), we de-

velop a similarity metric s for the detection proposal vec-

tors (Sec. 3.2). To account for the where, we measure the

output disturbance caused by an individual mask by select-

ing the proposal with maximum pairwise similarity between

the target detection vector and all detection proposal vectors

produced for a masked image. More precisely, following

our notation,

S(dt, f(Mi ⊙ I))) , max
dj∈f(Mi⊙I)

s(dt, dj), (3)

where S denotes the similarity between target detection vec-

tor dt and new detection proposals for the modified image.

This allows us to use the RISE masking technique to pro-

duce saliency maps for explaining object detector decisions.

Note, that this framework does not restrict dt to be directly

produced by the model. For that reason our method can

produce explanations for arbitrary detection vectors, such

as objects missed by the detector. Gradient-based methods

would not be able to do this, because there’s no starting

point to propagate from.

3.1. Mask generation

We adopt the mask generation approach from RISE [27].

1. Sample N binary masks of size h × w (smaller than

image size H ×W ) by setting each element indepen-

dently to 1 with probability p and to 0 with the remain-

ing probability.

2. Upsample all masks to size (h+ 1)CH × (w + 1)CW

using bilinear interpolation, where CH × CW =
⌊H/h⌋ × ⌊W/w⌋ is the size of the cell in the upsam-

pled mask.

3. Crop areas H × W with uniformly random offsets

ranging from (0, 0) up to (CH , CW ).

3.2. Similarity metric

To compute the similarity score between the target vec-

tor and the proposal vector, all three components should be

considered. We use Intersection over Union (IoU) to mea-

sure the spatial proximity of the bounding boxes encoded

by two vectors. To evaluate how similar two regions look to
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the network, we use the cosine similarity of the class prob-

abilities associated with the regions. Finally, for the net-

works that explicitly compute an objectness score, such as

YOLOv3 [29], we incorporate a measure of the similarity of

the objectness scores into the metric, as well. In our exper-

iments we only explain high confidence detections, i.e., we

set Ot = 1, so to incorporate objectness score into the simi-

larity metric we simply multiply it by Oj . As a result, detec-

tion proposals with lower objectness score will have lower

similarity with a high confidence target vector. If the net-

work does not produce an objectness score, e.g., Faster R-

CNN [30], the objectness term can be simply omitted. Thus,

the similarity score between two detection vectors can be

decomposed into three scalar factors:

s(dt, dj) = sL(dt, dj) · sP (dt, dj) · sO(dt, dj), (4)

where

sL(dt, dj) = IoU(Lt, Lj), (5)

sP (dt, dj) =
Pt · Pj

‖Pt‖‖Pj‖
, (6)

sO(dt, dj) = Oj . (7)

Scalar product has been chosen to model logical “AND” of

three similarity values, with the desired property that if one

of them is low, the total similarity value is also low.

3.3. Saliency inference

We now formulate the full process of generating saliency

maps using D-RISE.

1. Generate N RISE masks, M = {Mi, 1 ≤ i ≤ N}.

2. Convert the target detections to be explained into de-

tection vectors, Dt = {dt, 1 ≤ t ≤ T}. We can run

the detector on masked images only once to get the

saliency maps for all T detections.

3. Run the detector f on masked images I ⊙Mi produc-

ing Np proposals for each image, Dp = {Di
p, 1 ≤ i ≤

N} = {f(Mi ⊙ I), 1 ≤ i ≤ N} = {dij , 1 ≤ i ≤
N, 1 ≤ j ≤ Np}.

4. Compute pairwise similarities between two sets of de-

tection vectors Dt and Dp and take maximum score

per each masked image per each target vector. wt
i =

S(dt, D
i
p) = max1≤j≤Np

s(dt, d
i
j), 1 ≤ i ≤ N, 1 ≤

t ≤ T .

5. Compute a weighted sum of masks Mi with respect

to computed weights wt
i to get saliency maps Ht =

∑N

i=1 w
t
iMi.

All operations above, including the similarity computa-

tions, can be performed using efficient calls to the vector-

ized functions of the framework being used, specifically,

tensor multiplication, maximum along axis and weighted

sum along axis.

For most of our visual experiments, we used N = 5000
masks with probability p = 0.5 and resolution (h,w) =
(16, 16), with the exception of Figure 1 (column 1), Fig-

ure 2, Figure 4 and Figure 5 (top row) where we used more

fine-grained masks of resolution (30, 30). These saliency

maps contain more “speckles” because increasing the mask

resolution requires more masks for a good saliency approx-

imation. We used (30, 30) masks to compute the average

saliency maps in Section 4.4. We have selected these pa-

rameters heuristically balancing the computational load and

visaul quality of saliency maps.

Inference time depends only on the number of masks and

for N = 5000, D-RISE runs in approximately 70s per im-

age (for all detections) for YOLOv3 and 170s for Faster

R-CNN on NVidia Tesla V100.

4. Experiments and Results

We perform qualitative and quantitative experiments on

the MS-COCO dataset [17], which is one of the most widely

used object detection datasets. We used PyTorch [26] im-

plementations of YOLOv3 [29]2 and Faster R-CNN [30]3.

For the baselines we used GradCAM [34] and Gradi-

ents [35] applied to explain the class probability score of

the detection vector.

4.1. Sanity checks

Recently, a question about the validity of saliency meth-

ods has been raised, comparing them to edge detection tech-

niques that do not depend on the model or training data but

still produce visually compelling outputs resembling those

of saliency methods [1]. In this study, it has been shown that

the outputs of some widely accepted saliency methods do

not change significantly when the weights of the model that

each such method claims to explain are randomized. In such

cases, a confirmation bias may result in an invalid human as-

sessment when relying exclusively on the visual evaluation.

To address these concerns, we perform a model parame-

ter randomization test. Our results confirm that weight ran-

domization results in unintelligible saliency maps, meaning

that the method relies on the information within the trained

model to produce the explanations.

4.2. Automatic metrics

A common approach to evaluate a classification saliency

map is to measure its correlation with the human-labeled

ground truth mask of an object. In particular, we report the

Pointing game [43] metric. A hit is scored if the point of

2https://github.com/ultralytics/yolov3
3https://github.com/facebookresearch/maskrcnn-benchmark
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(a) D-RISE

(b) Grad-CAM

(c) Gradient

Figure 3: Visual comparison of D-RISE with classification

saliency methods for YOLOv3. The latter are applied to explain

the class probability of the corresponding detections. Saliency

maps explain the highlighted bounding boxes of the leftmost per-

son (left column) and the person crouching (right column). In the

YOLOv3 architecture, GradCAM is equivalent to taking one fea-

ture map containing the detection vector of interest. Since each

feature map contains multiple detections, it results in saliency

maps highlighting all objects of similar categories, instead of ex-

plaining a single detection. Similarly, Gradient produces saliency

maps that cannot be used to explain a particular detection.

maximum saliency lies within the ground truth object seg-

mentation, otherwise a miss is counted. Pointing game mea-

sures accuracy of saliency maps by computing the number

of hits over the total number of hits and misses.

Metrics based on correlation with ground-truth masks

rely on an assumption that the model is only using the ob-

ject itself for the prediction and not its context. For a biased

model, e.g. a model in Section 4.5, such an assumption

does not hold and a faithful saliency map should highlight

the important context. A number of metrics has been devel-

oped that perturb the image according to a saliency map and

gauge how the original prediction changes [33, 27, 12]. One

of such metrics, Deletion, sequentially removes pixels from

the image, starting from the most salient, while measuring

how quickly the model’s output deviates from the original

prediction. Insertion sequentially adds salient pixels start-

ing from a completely empty image and measures how fast

it approaches the target prediction. We adapt these met-

rics using the similarity score from Equation 4 and compute

them for D-RISE and the baselines.

Our method outperforms saliency maps produced by

classification saliency methods on all three metrics (Ta-

ble 1). Explanation of a single class score probability with

Figure 4: Interestingly, even though the model does not detect the

backpack (left), the saliency map still shows that it is able to focus

on the straps of the backpack (right).

classification saliency methods is not sufficient for produc-

ing meaningful explanations of the model’s prediction. D-

RISE, on the other hand, utilizes the whole output of the

model and takes localization aspect into account, resulting

in saliency maps of better quality.

4.3. Modes of Detector Failure

As outlined in [11], an object detector’s errors may be

categorized into the following modes of failure: 1) missing

an object entirely, 2) detecting an object with poor bounding

box localization and 3) correct localization but misclassifi-

cation of an object (which includes confusion with similar

classes, with dissimilar classes or with background). We

show that our method can be used to analyze each of these

specific types of errors.

For a missed detection, since D-RISE, unlike gradient-

based methods, can provide explanations not only for the

detections produced by a model but for any arbitrary detec-

tion vector, we can compute the saliency map for the missed

ground-truth detection vector. This may give an insight into

the source of error. For example, parts of the input image

highlighted by the saliency map are still considered to be

discriminative features, even though the model did not de-

tect the object, and the failure likely occurred while process-

ing these features (e.g., in the non-maximum suppression

step). Alternatively, the saliency map may not identify any

relevant regions when it does not recognize the object at all,

suggesting that the necessary features have not been learned

by the model. Figure 4 shows examples of our explana-

tions generated for missed detections; the saliency shows

that even though the backpack object was missed, the net-

work considers the straps discriminative.

For a correctly localized (high IoU score) but miscatego-

rized region, or for a correctly classified but poorly localized

(low IoU score) region, we can generate saliency maps for

both the ground truth and the predicted detection. By ana-

lyzing them as well as their difference, we can identify the

parts of the image that contributed most to the class confu-

sion. Figure 5 shows several examples of our explanations

for poor localization and misclassifications; e.g., the second

row shows that the TV was misclassified as microwave due

to the context surrounding it.
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Predicted and

ground truth
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Figure 5: Explanations for poor localization and misclassification. Red regions may be interpreted as the regions supporting the boxes in

the second and third columns. In the fourth column, red means the detector focused more than it should have and blue means it did not

focus enough on a region. In the first row the difference of saliency maps highlights that the umbrella handle caused the extended bounding

box. In the second row, the model confused a TV-set panel with one of a microwave.

(a) snowboard

(b) giraffe (c) person (d) fire hydrant (e) sink

Figure 6: Average saliency maps of selected MS-COCO cate-

gories cropped, aligned and averaged for all detections. Upper row

features mean saliency maps as well as mean images for ‘snow-

board’ averaged across all detections (left) and across three scales

of detection areas ([0:30:70:100] percentiles) (right). Aspect ratios

are preserved for all the average saliency maps.

4.4. Average saliency maps

To transition from analyzing individual saliency maps as

local explanations of the decisions made by the model to a

more holistic perspective capturing common patterns in a

model’s behaviour across many images, we compute aver-

age saliency maps for each category in the MS-COCO [17]

dataset. To extract these, we obtain all the occurrences of

the category detected by the model and crop them with the

Method PG (bbox) PG (mask) Del (↓) Ins (↑)

Gradient 0.7304 0.5195 0.0464 0.4561

GCAM 0.5232 0.4209 0.0762 0.4050

D-RISE 0.9656 0.8458 0.0440 0.5622

Table 1: Pointing game (PG) results (computed for bound-

ing boxes and segmentation masks) and Deletion, Insertion

metrics. The metrics are computed for all detections on MS-

COCO 2017 validation split produced by YOLOv3.

surrounding context. We then normalize and resize to the

average size computed per category and finally, compute

their averages. Some results are shown in Figure 6.

In [23], image averaging is used to reveal the regularities

in the data, specifically in an object’s context. Here, in addi-

tion to regularities in data, we want to unveil the regularities

in how this data is used by the model.

Instead of computing the mean of saliency map distri-

bution by averaging, Lapuschkin et al. [15] separate the

modes of class-specific saliency maps for classification by

clustering them. By analyzing one of the clusters, they

discovered that the model relied on a particular watermark

in its predictions (revealing a flaw in the PASCAL VOC

dataset[7]). In our experiments (on MS-COCO) with clus-

tering, we did not find any such anomalous examples, how-

ever we were able to observe vertically symmetric saliency

maps (e.g., Fig. 6b) assigned into separate clusters.

We observe that for some categories, certain object parts

may be more important than others on average (e.g., upper

parts of the bodies are deemed more salient for detecting the

‘person’ class), while other categories have saliency spread

more evenly across whole objects (e.g., for the ’giraffe’

class, one can observe full bodies of the animals facing right
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Figure 7: We train YOLOv3 on a biased dataset, in which a blue

dot is placed precisely at the top left corner of every bounding box

containing a fire hydrant. At test time, we can move the blue dot

arbitrarily. We notice that the presence of the dot can trigger false

positives (background being mistaken for a fire hydrant in top-left)

and produce misclassifications (a fire hydrant detected as a bottle

in top-right). Corresponding saliency maps produced by D-RISE

correctly point to the blue dot as a reason for these errors, and the

average saliency map (bottom right) shows a significant artifact

on the top-left corner. This type of analysis can provide model

designers or data scientists with insights about pathological biases

in the dataset.

and left in the average saliency map). Alternatively, for

some classes, average saliency can be relatively high out-

side of the bounding boxes, signifying that the model uses

more of the surrounding context for detecting these classes.

For example, after looking at the average saliency maps for

‘sink’ and observing higher saliency above the sink, we re-

alized retrospectively that the faucet was not labeled as part

of the sink, but since it evidently appears above the sink in a

majority of the images, the model has learned to use this in-

formation for detection. We show the average saliency maps

for the remaining MS-COCO categories for both YOLOv3

and Faster R-CNN in the supplementary material.

4.5. Deliberate bias insertion using markers

To further validate our claim that D-RISE can provide

insights about both aspects of object detection: categoriza-

tion and localization, we perform the following experiment.

We bias every image in the MS-COCO dataset that con-

tains either a fire hydrant or stop sign by placing a circular

marker on top-left or top-right corners of their respective

bounding boxes. We train a YOLOv3 detector on this bi-

ased dataset for 50 epochs. We notice a roughly 10% rel-

ative drop (10.96% for hydrant and 12.69% for stop sign)

in mean Average Precision (mAP) for these two categories

when testing on the unbiased MS-COCO test set, while per-

formance on other categories remains unblemished.

To further study this phenomenon, we place the marker

in random positions and observe the detection, as well as

D-RISE explanations of the detection (see Figure 7). For

instance, when the marker is located sufficiently away from

the bounding box of the fire hydrant, it can lead to a false

positive (background being confused for a fire hydrant) and

a misclassification (fire hydrant being detected as a bottle).

D-RISE explains that the false positive was caused by the

marker, while the misclassification was due to the similar

appearance of the top of the fire hydrant to a bottle top (Fig-

ure 7, top row). On the other hand, if the marker was moved

to inside the bounding box, the width of the box predicted

by the biased model is smaller than when it is on the corner

(Figure 7, bottom row). While our analysis is retrospective,

it is possible to predict dubious model behavior by inspect-

ing the average saliency maps of these two classes (Sec-

tion 4.4), as we show in Figure 7. Due to space constraints,

saliency maps for the stop sign class will be included in the

supplementary material.

4.6. Evaluating User Trust

An important aspect of model explanations is to establish

trust between humans and machine learning systems. Previ-

ous studies for explainable image classification have studied

the utility of saliency maps to evaluate if a user can identify

which of the two models is better [34]. We extend this ap-

proach to object detection by running D-RISE on the pub-

lic implementations of YOLOv3 and YOLOv3-Tiny, which

have an mAP 55.3% and 33.1% respectively on the MS-

COCO test set. We selected 242 unique objects where both

detectors made the correct prediction, so that users cannot

tell the performance discrepancy. We then asked users to

identify which of the two explanations was better, given the

object of interest in the image and the two D-RISE saliency

masks overlayed on the full image.

We received 5 responses for each object from a pool of

32 unique users from Mechanical Turk, who responded on

a scale from 2 (the explanation 1 was much better) to -2 (the

explanation 1 was much worse). Substantially more users,

50.2% vs 27.4%, found the explanations from the more ac-

curate model (YOLOv3) to be better or more trustworthy.

We include examples from the experiment with the Turk in-

terface in the supplementary materials.

5. Conclusion

We propose a novel approach for providing saliency-

based explanations for black-box object detectors. Our

method is general enough to be applied to many different

object detection architectures. We demonstrate the useful-

ness of our method in aiding error analysis and in providing

insights to model developers by means of per-class aver-

age saliency maps. While we have shown that our method

is capable of weeding out pathological biases in model be-

havior, the true benefits of explainability can be harnessed

only when we can use these insights to significantly im-

prove model performance. These form the basis of future

directions for this work.
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