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Abstract

Deep learning models are vulnerable to adversarial ex-

amples. As a more threatening type for practical deep

learning systems, physical adversarial examples have re-

ceived extensive research attention in recent years. How-

ever, without exploiting the intrinsic characteristics such as

model-agnostic and human-specific patterns, existing works

generate weak adversarial perturbations in the physical

world, which fall short of attacking across different models

and show visually suspicious appearance. Motivated by the

viewpoint that attention reflects the intrinsic characteristics

of the recognition process, this paper proposes the Dual

Attention Suppression (DAS) attack to generate visually-

natural physical adversarial camouflages with strong trans-

ferability by suppressing both model and human attention.

As for attacking, we generate transferable adversarial cam-

ouflages by distracting the model-shared similar attention

patterns from the target to non-target regions. Meanwhile,

based on the fact that human visual attention always focuses

on salient items (e.g., suspicious distortions), we evade the

human-specific bottom-up attention to generate visually-

natural camouflages which are correlated to the scenario

context. We conduct extensive experiments in both the digi-

tal and physical world for classification and detection tasks

on up-to-date models (e.g., Yolo-V5) and demonstrate that

our method outperforms state-of-the-art methods.1

1. Introduction

Deep neural networks (DNNs) have achieved remarkable

performance across a wide areas of applications, e.g., com-

puter vision [24, 35], natural language [42], and acoustics

[34], etc, but they are vulnerable to adversarial examples

*Corresponding author
1Our code can be found in https://github.com/nlsde-

safety-team/DualAttentionAttack.
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Figure 1. (a) shows the suspicious appearance of camouflages gen-

erated by previous work (i.e., UPC [19]). (b) is the painted car that

commonly exists in the physical world. (c) shows the adversar-

ial example (classified as pop bottle) generated by existing

work (i.e., CAMOU [52]) and its corresponding attention map.

(d) shows the adversarial example (classified as Shih-Tzu) gen-

erated by our DAS and its distracted attention map.

[44, 36]. These elaborately designed perturbations are im-

perceptible to humans but can easily lead DNNs to wrong

predictions, which pose a strong security challenge to deep

learning applications in both the digital and physical world

[22, 13, 31, 37, 51].

In the past years, a long line of work has been pro-

posed to perform adversarial attacks in different scenarios

under different settings [26, 7, 2]. Though challenging deep

learning, adversarial examples are also valuable for under-

standing the behaviors of DNNs, which could provide in-

sights into the blind-spots and help to build robust mod-

els [20, 45, 28, 50]. Generally, adversarial attacks can be

divided into two categories: digital attacks, which attack

DNNs by perturbing the input data in the digital space; and

physical attacks, which attack DNNs by modifying the vi-
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sual characteristics of the real object in the physical world.

In contrast to the attacks in the digital world [23, 48, 21, 52],

adversarial attacks in the physical world are more challeng-

ing due to the complex physical constraints and conditions

(e.g., lighting, distance, camera, etc.), which will impair

the attacking ability of generated adversarial perturbations

[12]. In this paper, we mainly focus on the more challenging

physical world attack task, which is also more meaningful

to the deployed deep learning applications in practice.

Though several attempts have been adopted to perform

physical attacks [31, 19, 30], existing works always ig-

nore the intrinsic characteristics such as model-agnostic and

human-specific patterns so that their attacking abilities are

still far from satisfactory. In particular, the limitations can

be summarized as (1) the existing methods ignore the com-

mon patterns among models and generate adversarial per-

turbations using model-specific clues (e.g., gradients and

weights of a specific model), which fails to attack across

different target models. In other words, the transferability

of adversarial perturbations is weak, which impairs their at-

tacking abilities in the physical world; (2) current methods

generate adversarial perturbations with a visual suspicious

appearance which is poorly aligned with human perception

and even attracts the human attention. For example, painted

on the adversarial camouflage [19], the classifier misclassi-

fies the car into a bird. However, as shown in Figure 1(a),

the camouflage apparently contains un-natural and suspi-

cious bird-related features (e.g., bird head), which attracts

human attention.

To address the mentioned problems, this paper proposes

the Dual Attention Suppression (DAS) attack by suppress-

ing both the model and human attention. Regarding the

transferability for attacks, inspired by the biological ob-

servation that cerebral activities between different individ-

uals share similar patterns when stimulus features are en-

countered [49] (i.e., selected attention [27]), we perform

adversarial attacks by suppressing the attention patterns

shared among different models. Specifically, we distract the

model-shared similar attention from target to non-target re-

gions via connected graphs. Thus, target models will be

misclassified by not paying attention to the objects in the

target region. Since our generated adversarial camouflage

captures model-agnostic structures, it can transfer among

different models, which improves the transferability.

As for the visual naturalness, psychologists have found

that the bottom-up attention of human vision will alert peo-

ple to salient objects (e.g., distortion) [6]. Existing methods

generate physical adversarial examples with visually suspi-

cious appearance, which shows salient features to human

perception. Thus, we try to evade this human-specific vi-

sual attention by generating adversarial camouflage which

contains high semantic correlation to scenario context. As a

result, the generated camouflage is more unsuspicious and

natural in terms of human perception. Figure 1(c) is the

adversarial camouflage generated by CAMOU [52] which

is suspicious to human vision. By contrast, our generated

adversarial camouflage yields a more natural appearance as

shown in Figure 1(d).

To the best of our knowledge, we are the first to exploit

the shared attention characteristics among models and gen-

erate adversarial camouflages world by suppressing both the

model and human attention. Extensive experiments in both

the digital and physical world on both classification and

detection tasks are conducted which demonstrate that our

method outperforms other state-of-the-art methods.

2. Related Works

Adversarial examples are elaborately designed perturba-

tions which are imperceptible to human but could mislead

DNNs [44, 22]. In the past years, a long line of work

has been proposed to develop adversarial attack strategies

[25, 13, 30, 46, 11, 29, 52, 19]. In general, there are sev-

eral different ways to categorize adversarial attack methods,

e.g., targeted or untargeted attacks, white-box or black-box

attacks, etc. Based on the domain in which the adversar-

ial perturbations are generated, adversarial attacks can be

divided into digital attacks and physical attacks.

Digital attacks generate adversarial perturbations for in-

put data in the digital pixel domain. Szegedy et al. [44]

first introduced adversarial examples and used the L-BFGS

method to generate them. By leveraging the gradients of

target models, Goodfellow et al. proposed the Fast Gradi-

ent Sign Method (FGSM) [22] which could generate adver-

sarial examples quickly. Moreover, Madry et al. [1] pro-

posed Projected Gradient Decent (PGD), which is currently

the strongest first-order attack. Based on the gradient infor-

mation, a series of attack approaches have been proposed

[25, 8, 48, 9]. Although these attacks achieve substantial

results in the digital world, their attacking abilities degener-

ate significantly when introduced into the physical world.

On the other hand, physical attacks aim to generate ad-

versarial perturbations by modifying the visual characteris-

tics of the real object in the physical world. To achieve the

goal, several works first generate adversarial perturbations

in the digital world, then perform physical attacks by paint-

ing the adversarial camouflage on the real object or directly

create the perturbed objects. By constructing a rendering

function, Athalye et al. [2] generated 3D adversarial objects

in the physical world to attack classifiers. Eykholt et al. [13]

introduced NPS [33] into the loss function which considers

the fabrication error so that they can generate strong adver-

sarial attacks for traffic sign recognition. Recently, Huang

et al. [19] proposed the Universal Physical Camouflage At-

tack (UPC), which crafts camouflage by jointly fooling the

region proposal network and the classifier. Another line of

work tries to perform physical adversarial attacks by gen-
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erating adversarial patches [3], which confine the noise to

a small and localized patch without perturbation constraint

[30, 31].

3. Approach

In this section, we first provide the definition of the prob-

lem and then elaborate on our proposed framework.

3.1. Problem Definitions

Given a deep neural network Fθ and an input clean image

I with the ground truth label y, an adversarial example Iadv
in the digital world can make the model conduct wrong

predictions as follows:

Fθ(Iadv) 6= y s.t. ‖I− Iadv‖ < ǫ, (1)

where || · || is a distance metric to quantify the distance be-

tween the two inputs I and Iadv sufficiently small.

In the physical world, let (M,T) denote a 3D real

object with a mesh tensor M, a texture tensor T, and

ground truth y. The input image I for a deep learning

system is the rendered result of the real object (M,T)
with environmental condition c ∈ C (e.g., camera views,

distance, illumination, etc.) from a renderer R by I =
R((M,T), c). To perform physical attacks, we generate

Iadv = R((M,Tadv), c) through replacing the original T

with an adversarial texture tensor Tadv , which has different

physical properties (e.g., color, shape). Thus the definition

of our problem can be depicted as:

Fθ(Iadv) 6= y s.t. ‖T−Tadv‖ < ǫ, (2)

where we ensure the naturalness of the generated adversar-

ial camouflage in the physical world by ǫ.
In this paper, we mainly discuss adversarial attacks in the

physical world and generate an adversarial camouflage (i.e.,

texture), which is able to fool the real deep learning systems

when it is painted or overlaid on a real object.

3.2. Framework Overview

To generate visually-natural physical adversarial camou-

flage with strong transferability, we propose the Dual Atten-

tion Suppression (DAS) framework which suppresses both

the model and human attention. The overall framework can

be found in Figure 2.

Regarding the transferability for attack, inspired by

the biological observation, we suppress the similar atten-

tion patterns shared among models. Specifically, we gener-

ate adversarial camouflage by distracting the model atten-

tion from target to non-target regions (e.g., background) via

connected graphs. Since different deep models yield simi-

lar attention patterns towards the same object, our generated

adversarial camouflage could capture the model-agnostic

structures and transfer to different models.

As for the visual naturalness, we aim to evade the

human-specific bottom-up attention in human vision [6] by

generating visually-natural camouflage. By introducing a

seed content patch P0, which has a strong perceptual cor-

relation to the scenario context, the generated adversarial

camouflage in this case can be more unsuspicious and natu-

ral to human perception. Since humans pay more attention

to object shapes when making predictions [29], we further

preserve the shape information of the seed content patch to

improve the human attention correlations. Thus, the human-

specific attention mechanism is evaded, leading to more nat-

ural camouflage.

3.3. Model Attention Distraction

Biologists have found that the same stimulus features

(i.e., selected attention) yield similar patterns of cerebral ac-

tivities among different individuals [49] (i.e., similar char-

acteristics of the neuron hyper-perception). Since artificial

neural networks are implemented from the human central

nervous system [16], it is also reasonable for us to assume

that DNNs may have the same characteristics, i.e., differ-

ent models have similar attention patterns towards the same

objects when making the same predictions. Based on the

above observations, we consider improving the transfer-

ability of adversarial camouflages by capturing the model-

agnostic attention structures.

Visual attention techniques [53] have been long studied

to improve the explanation and understanding of deep learn-

ing behaviors, such as CAM [53], Grad-CAM [40], and

Grad-CAM++ [5]. When making predictions, a model pays

most of its attention to the target objects rather than mean-

ingless parts. Intuitively, to successfully attack a model, we

directly distract the model attention from the salient objects.

In other words, we distract the model-shared similar atten-

tion map on the salient area to other regions and force the

attention weights to distribute uniformly through the entire

image. Thus, the model may fail to focus on the target ob-

ject and make the wrong predictions.

Specifically, given an object (M,T), an adversarial tex-

ture tensor Tadv to be optimized, and a certain label y, we

get Iadv by R and then compute the attention map S
y with

an attention module A as

S
y = A(Iadv, y). (3)

More precisely, the attention module A is

A(I, y) = relu(
∑

k

∑

i

∑

j

αky
ij · relu(

∂py

∂Ak
ij

) ·Ak
ij), (4)

where αky
ij is the gradient weights for a particular class y

and activation map k, py is the score of the class y, Ak
ij
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Figure 2. The framework of our DAS method. We first distract the intrinsic attention characteristic through fully exploiting the simi-

lar attention patterns of models and forcing the “heat” regions away from the target object with loss function Ld. Then we evade the

human-specific visual attention mechanism by correlating the appearance of adversaries to the context scenario and preserving the shape

information of seed content image to generate visually-natural adversarial camouflage.

is the pixel value in position (i, j) of the k-th feature map,

and relu(·) denotes the relu function. Note that the attention

module can be an arbitrary deep learning model rather than

the target model.

Given the attention map S
y calculated by Eqn 3, we aim

to distract the attention region and force the model to focus

on non-target regions. Intuitively, the pixel value of the at-

tention map represents to what extent the region contributes

to model predictions. To decrease the attention weights

of the salient object and disperse these attention regions,

we exploit the connected graph, which contains a path be-

tween any pair of nodes within the graph. In an image, a

region with attention weights for each pixel higher than a

specific threshold can be deemed as a connected region. To

distract the model attention using the connected graph, we

consider the following two tasks: (1) decrease the overall

connectivity by separating connected graphs into multiple

sub-graphs; (2) reduce the weight of each node within a

connected sub-graph. To achieve these goals, we propose

attention distraction loss as

Ld =
1

K

∑

k

Gk

N −Nk

, s.t. Gk ⊆ S
y, (5)

where Gk is the sum of pixel values in the region corre-

sponding to k-th connected graph in S
y , N is the total pixel

number of the S
y , and Nk is the total pixel number of Gk.

By minimizing Ld, the salient region in the attention map

becomes smaller (i.e., distracted) and the pixel values of

the salient regions become lower (i.e., no longer “heated”),

leading to the “distracted” attention map.

3.4. Human Attention Evasion

To overcome the problem brought by the complex envi-

ronmental conditions in the physical world, most physical

attacks generate adversarial perturbations with a compara-

tively huge magnitude [11]. Since the bottom-up human

attention mechanism always alerts people to salient objects

(e.g., distortion) [6], adversarial examples in this case can

always attract human attention due to the salient perturba-

tions, showing suspicious appearance and lower stealthiness

in the physical world.

In this paper, we aim to generate more visually-natural

camouflage by suppressing the human visual mechanism,

which will evade human-specific attention. Intuitively, we

expect the generated camouflage to share similar visual se-

mantics with the context to be attacked (e.g., beautiful paint-

ings on vehicles are more perceptually acceptable for hu-

mans than meaningless distortions). Thus, the generated

adversarial camouflage can be highly correlated to human

perception, which is unsuspicious to human perception.

In particular, we first incorporate a seed content patch

P0 which contains a strong semantic association with the

scenario context. We then paint the seed content patch on

the vehicle (M,T) by T0 = Ψ(P0,T). Specifically, Ψ(·)
is a transformation operator which first transfers the 2D

seed content patch into a 3D tensor, and then paint the car

through tensor addition.

Since humans pay more attention to shapes when focus-

ing on objects and making predictions [29], we aim to fur-

ther improve the human attention correlation by better pre-

serving the shape of the seed content patch. Specifically,

we obtain the edge patch Pedge = Φ(P0) using an edge

extractor Φ [4] from the seed content patch. It should be

noticed that Pedge has 0-1 value in each pixel. After that,

we simply transform the edge patch Pedge to a mask tensor

E which has the same dimension with T0.

With mask tensor E, we can distinguish the edge and

non-edge regions and limit the perturbations added to the
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edge regions. Thus, the attention evasion loss Le can be

formulated as

Le = ‖(β ·E+ 1)⊙ (Tadv −T0)‖
2
2, (6)

where the β ·E+ 1 is the weight tensor, the 1 is a tensor in

which each element is 1 and its dimension is same with E

and ⊙ denotes the element-wise multiplication.

To further improve the naturalness of the camouflage, we

introduce the smooth loss [13] by reducing the difference

square between adjacent pixels. For a rendered adversarial

image Iadv , the smooth loss can be formulated as:

Ls =
∑

(xi,j − xi+1,j)
2 + (xi,j − xi,j+1)

2, (7)

where xi,j is the pixel value of Iadv at coordinate (i, j).
To sum up, the generated camouflage in this case will be

visually correlated to the scenario context in both the pixel

and perceptual level, leading to evade the human perceptual

attention.

3.5. Overall Optimization Process

Overall, we generate the adversarial camouflage by

jointly optimizing the model attention distraction loss Ld,

human attention evasion loss Le, and smooth loss Ls.

Specifically, we first distract the target model from the

salient objects to the meaningless part (e.g., background);

we then evade the human-specific attention mechanism by

enhancing the strong perceptual correlation to the scenario

context. Thus, we can generate transferable and visually-

natural adversarial camouflages by minimizing the follow-

ing formulation as

minLd + λLe + Ls, (8)

where λ controls the contribution of the term Le.

To balance the attacking ability and appearance natural-

ness, we set λ as 10−5 in the classification task and 10−3

in the detection task, and set β as 8 according to our ex-

perimental results. The overall training algorithm can be

described as Algorithm 1.

4. Experiments

In this section, we first outline the experimental settings,

we then illustrate the effectiveness of our proposed attack-

ing framework by thorough evaluations in both the digital

and physical world.

4.1. Experimental Settings

Virtual environment. To perform a physical world at-

tack, we choose CARLA [10] as our 3D virtual simulated

Algorithm 1 Dual Attention Suppression (DAS) Attack

Input: environmental parameter set C = {c1, c2, ...cr} ,

3D real object (M,T), seed content patch P0, neural

rendererR, attention model A, and a class label y
Output: adversarial texture tensor Tadv

T0 ← Ψ(P0,T)
Pedge ← Φ(P0)
transform Pedge to E

initial Tadv as T0

for the number of epochs do

select minibatch environmental conditions from C
for m = r/minibatch steps do

Iadv ← R((M,Tadv), cm)
S
y ← A(Iadv, y)

calculate the Ld, Le and Ls by Eqn (5, 6, 7)

optimize the Tadv by Eqn (8)

end for

end for

environment, which is the commonly used open-source

simulator for autonomous driving research. Based on Un-

real Engine 4, CARLA provides many high-resolution open

digital assets, e.g., urban layouts, buildings, and vehicles to

simulate a digital world that is nearly the same as the real

world.

Evaluation metrics. To evaluate the performance of our

proposed method, we select the widely used Accuracy as

the metric for the classification task; as for the detection

task, we adopt the P@0.5 following [52], which reflects

both the IoU and precision information.

Compared methods. We choose several state-of-the-

art works in the 3D attack and physical attack literature,

including UPC [19], CAMOU [52], and MeshAdv [47]. We

use ResNet-50 as its base-model for the classification and

Yolo-V4 for detection. We provide more information about

these methods in Supplementary Material.

Target models. We select commonly used model archi-

tectures for experiments. Specifically, Inception-V3 [43],

VGG-19 [41], ResNet-152 [15], and DenseNet [18] are em-

ployed for the classification task; Yolo-V5 [38], SSD [32],

Faster R-CNN [39], and Mask R-CNN [14] are employed

for the detection task. For all the models, we use the pre-

trained version on ImageNet and COCO.

Implementation details. We empirically set λ = 10−5

for classification task, λ = 5 × 10−3 for detection task

and we set β = 8. We adopt an Adam optimizer with a

learning rate of 0.01, a weight decay of 10−4, and a maxi-

mum of 5 epochs. We employ a seed content patch (e.g., a

stick smile face image) as the appearance of the 3D object

in the training process. All of our codes are implemented

in PyTorch. We conduct the training and testing processes

on an NVIDIA Tesla V100-SXM2-16GB GPU cluster. In
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the physical world attack scenario, adversaries only have

limited knowledge and access to the deployed models (i.e.,

architectures, weights, etc.). Considering this, we mainly

focuses on attacks in the black-box settings, which is more

meaningful and applicable for physical world attacks.

4.2. Digital World Attack

In this section, we evaluate the performance of our gen-

erated adversarial camouflages on the vehicle classification

and detection task in the digital world under black-box set-

tings.

We randomly select 155 points in the simulation environ-

ment to place the vehicle and use a virtual camera to capture

100 images at each point using different settings (i.e., an-

gles, and distances). Specifically, we use different distance

values (5, 10, 15, and 20), four camera pitch angle values

(22.5◦, 45◦, 67.5◦, and 90◦), and eight camera yaw angle

values (south, north, east, west and southeast, southwest,

northeast, northwest). We then collect 15,500 simulation

images with different setting combinations, and we choose

12,500 images as the training set and 3,000 images as the

test set. To conduct fair comparisons, we use the backbone

of ResNet-50 (for classification) and Yolo-V4 (for detec-

tion) as attention modules in training. As illustrated in Table

1 and Table 2, we can draw several conclusions as follows:

(1) Our adversarial camouflage achieves significantly

better performance for both classification and detection

tasks on different models (a maximum drop by 41.02% on

ResNet-152 and a maximum drop by 23.93% on Faster R-

CNN).

(2) We found that UPC works comparatively worse than

other baselines for detection task. We conjecture the reason

might be that UPC is primarily designed for physical at-

tacks therefore showing worse attacking ability in the digi-

tal world. By contrast, our DAS attack exploits the intrinsic

characteristics, which still achieves good attacking ability

in the digital world.

(3) SSD shows evidently better robustness compared to

other backbone models (i.e., lower accuracy decline). The

reason might be that some modules in SSD are less vulner-

able to adversarial attacks, which could be used to further

improve model robustness. We put it as future work.

Method
Accuracy (%)

Inception-V3 VGG-19 ResNet-152 DenseNet

Raw 74.36 40.62 73.51 71.91

MeshAdv 42.31 32.44 35.33 58.04

CAMOU 47.51 31.46 48.93 57.56

UPC 42.40 38.00 48.18 65.87

Ours 39.86 30.18 32.49 55.42

Table 1. The results in the digital world on the classification task.

Method
P@0.5 (%)

Yolo-V5 SSD Faster R-CNN Mask R-CNN

Raw 92.07 81.54 86.04 89.24

MeshAdv 72.45 66.44 71.84 80.84

CAMOU 74.01 73.81 69.64 76.44

UPC 82.41 74.58 76.94 81.97

Ours 72.58 65.81 62.11 70.21

Table 2. The results in the digital world on the detection task.

Classification Classification Detection Detection

Figure 3. The results of attacking toy cars. They are respectively

recognized as car, sandal, car, mouse.

4.3. Physical World Attack

As for the physical world attack, we conduct several ex-

periments to validate the practical effectiveness of our gen-

erated adversarial camouflages. Due to the limitation of

funds and conditions, we print our adversarial camouflages

by an HP Color LaserJet Pro MFP M281fdw printer and

stick them on a toy car model with different backgrounds to

simulate the real vehicle painting. To conduct fair compar-

isons, we take 144 pictures of the car model on various en-

vironmental conditions (i.e., 8 directions {left, right, front,

back and their corresponding intersection directions}, 3 an-

gles {0◦, 45◦, 90◦}, 2 distances {long and short distances}
and 3 different surroundings) using a Huawei P40 phone.

The visualization of our generated adversarial camouflages

can be found in Figure 3.

The evaluation results can be witnessed in Table 3 and

Table 4. Compared with other methods, the DAS shows

competitive transferable attacking ability, which is signif-

icantly better than the compared baselines (e.g., 31.94%

on Inception-V3, 27.78% on VGG-19, 29.86% on ResNet-

152, and 34.03% on DenseNet, respectively). Moreover,

the evaluation result of UPC appears a distinct improvement

than that in the digital world, which is consistent with our

analysis. However, the SSD shows lower robustness in the

physical world which is worth further study. Besides, the

Yolo-V5 shows stunning P@0.5 values, which probably be-

cause that Yolo-V5 is specially designed for applications

in the physical world. Though facing this strong model,

our DAS method still shows a certain attacking ability com-

pared with others.

To sum up, the experimental results demonstrate the

strong transferable attacking ability of our adversarial cam-

ouflages in the physical world.
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4.4. Model Attention Analysis

In this part, we conduct a detailed analysis on model at-

tention through both qualitative and quantitative studies to

validate the effectiveness the model attention distraction in

our DAS attack.

Firstly, we conduct a qualitative study by visualizing the

attention regions of different models towards the same im-

age. As shown in Figure 4(a), different DNNs show similar

attention patterns towards the same image. In other words,

different models pay their attention to similar regions, indi-

cating that the attention is shared among models and can be

deemed as a model-agnostic characteristic.

We then conduct a quantitative study by calculating the

structural similarity index measure (SSIM) [54], which is

a well-known quality metric used to measure the similarity

between two images [17]. Specifically, we generate the at-

tention maps of a specific image (i.e., panda) on different

models and calculate the SSIM values between each pair of

the attention maps on different models. As shown in Fig-

ure 4(b), different models demonstrate comparatively high

similarities of the attention maps.

Finally, we visualize the attention differences before and

Method
Accuracy (%)

Inception-V3 VGG-19 ResNet-152 DenseNet

Raw 58.33 40.28 41.67 46.53

MeshAdv 40.28 34.03 38.89 36.11

CAMOU 40.28 29.17 31.25 45.14

UPC 35.41 33.33 33.33 41.67

Ours 31.94 27.78 29.86 34.03

Table 3. The results in the physical world on the classification task.

Method
P@0.5 (%)

Yolo-V5 SSD Faster R-CNN Mask R-CNN

Raw 100.00 90.28 68.06 93.75

MeshAdv 100.00 61.11 56.25 63.19

CAMOU 99.31 61.11 61.81 63.19

UPC 100.00 63.19 52.08 61.81

Ours 92.36 56.25 44.44 54.86

Table 4. The results in the physical world on the detection task.

Inception-V3 VGG-19

ResNet-152 DenseNet

(a)

DenseNet
Inception-V3

ResNet-152
VGG-19

De
ns
eN

et
In
ce
pt
io
n-
V3

Re
sN

et
-1
52

VG
G-
19

1.000 0.765 0.734 0.560

0.765 1.000 0.797 0.614

0.734 0.797 1.000 0.612

0.560 0.614 0.612 1.000
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 4. (a) is the attention maps on 4 different models to a partic-

ular image. (b) is a heat map drawn according to the SSIM values.

after attacks as shown in the Figure 5, indicating that the

model attention is distracted away from the salient regions.

b
e
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re

a
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e
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Figure 5. The attention maps before and after our DAS attack. Af-

ter our DAS attack, the model attention is distracted.

In summary, we can draw several conclusions as follows:

(1) different DNNs show similar attention patterns towards

the same class in a specified image; (2) we can adversar-

ially attack a DNN to wrong predictions by distracting its

attention. More experimental results can be found in the

Supplementary Material.

4.5. Human Perception Study

To evaluate the naturalness of our generated adversar-

ial camouflage, we conduct a human perception study on

one of the most commonly used crowdsourcing platform.

We adversarially perturb our 3D car object using different

methods (i.e., MeshAdv, CAMOU, UPC, and Ours) and get

the adversarial textures. Then we paint the car using these

camouflages and get the rendered images for human percep-

tion studies as follows: (1) Recognition. The participants

are asked to assign each of the camouflages generated by

the methods above to one of the 8 classes (the ground-truth

class, 6 classes similar to the ground-truth, and “I cannot

tell what it is”). As for CAMOU, given it lacks semantic

information, we do not consider it for the recognition task;

(2) Naturalness. The participants are asked to score the nat-

uralness of the camouflages from 1 to 10. In particular, we

collect all responses from 106 participants.

Question
Percent (%)

MeshAdv CAMOU UPC Ours

Recognition 36.6 – 27.4 49.6

Naturalness 43.4 39.6 40.6 60.4

Table 5. The results of human perception study.

As shown in Table 5, 49.6% of the participants can rec-

ognize the ground-truth label for our camouflages, which

are far better than those generated by other methods. As for

the naturalness task, up to 60.4% of the participants believe

that our adversarial camouflage is natural-looking, which

outperforms others by large margins (17%+). Thus, we can

conclude that our adversarial camouflage is most visually

natural and perceptually consistent to human perception.
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4.6. Ablation Studies

In this section, we conduct several ablation studies to fur-

ther investigate the contributions of our two main loss terms,

i.e., the model attention distraction loss and the human at-

tention evasion loss. Due to the fact that the smooth loss is

fully studied in [13], we set it as a fixed term.

The effect of different loss terms. Different loss terms

play different roles, we conduct an ablation study to fur-

ther investigate the effect of loss terms. We argue that the

model attention distraction loss Ld mainly provides a trans-

ferable attacking ability in our DAS method and the human

attention evasion provides the natural appearance. To prove

these views, we conduct an experiment by calculating dif-

ferent loss term combinations. Specifically, we optimize the

adversarial camouflage using functionLd,Le, andLd+λLe

respectively (with Ls fixed). As shown in Table 6, the accu-

racy shows a significant drop (i.e., 36.53% under Ld setting

to 59.87% under Le setting, 39.86% under Ld + Le set-

ting). And the corresponding SSIM values generated with a

benign image are 0.6905, 0.9987, and 0.7551 respectively,

demonstrating our viewpoints. Besides, an interesting result

can be observed in our experiments. When training under

Le setting, the accuracy appears an evident improvement

on VGG-19 and DenseNet but drop on Inception-V3 and

ResNet-152, which means that common textures may cause

agnostic impact to DNNs, further demonstrating their vul-

nerability.

Method
Accuracy (%)

Inception-V3 VGG-19 ResNet-152 DenseNet

Raw 74.36 40.62 73.51 71.91

Ld 36.53 25.87 31.20 51.73

Le 59.87 50.00 47.87 75.07

Ld + λLe 39.86 30.18 32.49 55.42

Table 6. The ablation study on attention distraction portion. We

set λ as 10−5.

The effect of hyper-parameter λ. Regarding the hyper-

parameter λ, we argue that it controls the level of the strong

semantic correlation with the scenario context. We evaluate

the effectiveness of λ on a ResNet-50 model using Accu-

racy and SSIM. Specifically, we set the λ as 10−5, 10−4,

10−3, 10−2, and 10−1, respectively. As illustrated in Fig-

ure 6, the model accuracy first increases and then keeps a

stable value as λ increases. We calculate the SSIM values

between each pair of the clean and corresponding adversar-

ial example, which shows the similar tendency (i.e., 0.7034,

0.7551, 0.8750, 0.9982, 0.9991, and 0.9998, the closer to 1

the SSIM value is, the more similar the images are). Ac-

cording to the results, we can draw the conclusion that λ
balances the attacking ability and appearance. When λ
gets bigger, the accuracy and SSIM value get bigger, which

means lower attacking ability and better appearance. And

finally, the SSIM achieves its upper bound, leading to the
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Figure 6. Ablation on studying the effectiveness of λ. The dotted

line represents the trend of accuracy change, and the correspond-

ing value of each λ is the average accuracy of the four models.

loss of additional attacking ability.

5. Conclusion

In this paper, we propose the Dual Attention Suppres-

sion (DAS) attack to generate adversarial camouflage in the

physical world by suppressing both model and human at-

tention. To improve the transferability of adversarial cam-

ouflages, we suppress the model attention by distracting the

model-shared similar attention from target to non-target re-

gions. Since our generated camouflage captures the model-

agnostic structures, it can transfer among different models.

To generate more visually-natural camouflage, we suppress

the human attention by evading the human-specific bottom-

up attention. By preserving the shape of a seed content

patch which has strong semantic association to the scenario

context, the generated camouflage can be highly correlated

to human perception, which is more natural and unsuspi-

cious to human attention. We conduct extensive experi-

ments for both classification and detection tasks in both the

digital and physical world under black-box setting, and our

DAS outperforms state-of-the-art baselines.

In the future, we are interested in investigating the attack

abilities of our adversarial camouflage using a real vehicle

in the real-world scenario. Using projection or 3D print-

ing, we could simply paint our camouflage on a real-world

vehicle. Further, we would also like to investigate the effec-

tiveness of our generated camouflage to improving model

robustness against different noises.
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