
 
 

 

 

Abstract 
 

Robust principal component analysis (RPCA) and its 

variants have gained wide applications in computer vision. 

However,  these methods either involve manual adjustment 

of some parameters, or require the rank of a low-rank 

matrix to be known a prior. In this paper, an adaptive rank 

estimate based RPCA (ARE-RPCA) is proposed, which 

adaptively assigns weights on different singular values via 

rank estimation. More specifically, we  study the 

characteristics of the low-rank matrix, and develop an 

improved Gerschgorin disk theorem to estimate the rank of 

the low-rank matrix accurately. Furthermore in view of the 

issue occurred in the Gerschgorin disk theorem that 

adjustment factor need to be manually pre-defined, an 

adaptive setting method, which greatly facilitates the 

practical implementation of the rank estimation, is 

presented. Then, the weights of singular values in the 

nuclear norm are updated adaptively based on iteratively 

estimated rank, and the resultant low-rank matrix is close 

to the target. Experimental results show that the proposed 

ARE-RPCA outperforms the state-of-the-art methods in 

various complex scenarios. 

 

1. Introduction 

The real world is full of high-dimensional data such as 
images and videos. The processing in high-dimensional 
space is computationally expensive and intractable. 
Fortunately, most data are not unstructured and randomly 
distributed over the high-dimensional space, and usually 
have patterns and distributed over low-dimensional 
manifolds. Principal component analysis (PCA) effectively 
proves this phenomenon, where most high-dimensional 
data lie around a low-dimensional subspace spanned by the 
principal components [1]. Hence PCA can be viewed as a 
low-rank modeling technique, and works well when the 
matrix data has no missing entries with  normal 
errors/noise. However, the PCA often produces an 
undesired model when the data assumptions do not hold. 
Among these issues, the outlier is one of the most important 

limitations. 
Robust PCA (RPCA) was proposed in [2] to address 

these issues by decomposing a data matrix into a low-rank 
matrix and a sparse matrix containing outliers as follows:  arg min�,
 ��
�(�) + �‖
‖�     �. �.    � = � + 
,       (1) 

where � is the measurement matrix, � and 
 denote the 
decomposed low-rank matrix and sparse matrix, 
respectively, ��
�(�) denotes the rank of matrix �, ‖
‖� 
indicates the ℓ� -norm which is the number of non-zero 
elements of 
, λ is a parameter balancing the rankness and 
sparsity. Hence, RPCA is more robust than PCA as the 
former considers outliers by employing a sparse term. 

However, the above optimization problem is intractable 
because the rank operator and ℓ� -norm are nonconvex. 
Fortunately, it can be relaxed to the following convex 
problem: arg min�,
  ‖�‖∗ + �‖
‖�     �. �.    � = � + 
,         (2) 

where || ∙ ||∗  and || ∙ ||�  are the nuclear norm and the ℓ� -
norm, respectively, and ‖�‖∗ = ∑  !(�)! , where  !(�)  is 
the "-th singular value of matrix �. As the nuclear norm and ℓ�-norm are the convex surrogates of the rank function and ℓ�-norm, respectively, a perfect recovery can be achieved 
by solving the above convex optimization [3]. 

RPCA is an efficient way to find the sparsity and low-
rankness and has been gained wide applications [4-14], 
such as face recognition[4, 5], audio processing [6],  depth 
image repair [7], background subtraction [8], and recovery 
models in vision process etc.  

The optimization problem (2) is not solved immediately 
since the matrices �  and 
  are coupled. Alternating 
direction method of multipliers (ADMM) algorithm is often 
employed to solve the RPCA problem for obtaining sparse 
and low-rank decomposition [2]. The key ingredient of 
ADMM based RPCA algorithm is the nuclear norm 
minimization (NNM) sub-problem, which is related to low-
rank matrix recovery. The solution to NNM problem is the 
so-called singular value soft-thresholding operator [15, 16]: �# = arg min� ‖� − �‖% + &‖�‖∗ = 'Σ)[+]-.,       (3) 

where &  is a parameter controlling the rankness, � ='+-.  is the singular value decomposition (SVD) of � 
with + = diag({ !}�2!2345 (6,7)) , and (Σ)[+])!! =
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sgn( !) ∙ max (| !| − &, 0) denotes the soft-thresholding on + with parameter &. One can observe that the nuclear norm 
minimization reduces the singular values on the same scale 
for those larger than τ. Thus this approach is insensitive to 
outliers [17]. 

To improve the adaptation of NNM, Hu et al. [18] 
proposed a truncated nuclear norm regularization (TNNR) 
method, where only some special singular values are 
regularized. Later, Gu et al. [19, 20] proposed a weighted 
nuclear norm minimization (WNNM) that replaces the 
nuclear norm with a weighted one defined by ‖�‖; = ∑ <! !(�)! ,                           (4) 

where <! are non-negative weights. The weighting strategy 
greatly improves the performance of NNM method, but the 
weights are dependent on one constant regularization 
parameter that is empirically chosen [19, 20]. On the other 
hand, assuming that the rank of �  is known in some 
practical applications, Oh et al. [21, 22] proposed a partial 
sum of singular values (PSSV) minimization defined by arg min�,
 ∑  !(�) + �‖
‖�345 (6,7)!=>?�  �. �.  � = � + 
,  (5) 

where N is the known rank of a low-rank matrix. For 
instance, one can set @ = 1  for background subtraction, 
and @ = 3 for photometric stereo. However, the rank of � 
cannot be known in most practical applications, PSSV is 
unable to recover the low-rank structure correctly in these 
cases.  

To address this problem, a new method to estimate the 
rank of a low-rank matrix is presented in this paper. 
Inspired by the source number estimation in array signal 
processing [23], we propose an improved estimation 
method via Gerschgorin disks to estimate the rank of a low-
rank matrix. Furthermore, an adaptive weighting strategy 
based on the iteratively estimated rank is developed to 
improve the performance of low-rank matrix recovery. 
Therefore, we can not only get an accurate approximation 
to the rank function, but also faultlessly recover the low-
rank matrix. In summary, the main contributions of this 
paper are as follows: 
• An improved method based on Gerschgorin disks is 

presented to estimate the rank of a low-rank matrix. 
• A novel RPCA method with weight updating based on 

the iteratively estimated rank is proposed to recover the 
low-rank structure of a data matrix and the sparse 
representation from corrupted data.  

• The proposed algorithm is applied to various scenarios 
to demonstrate the superior performance over the 
existing methods. 

The organization of the paper is as follow. Section 2 
presents the modified robust PCA which consists of rank 
estimation and rank-estimation based adaptive weighting.  
Section 3 reports the experimental results, and some 
conclusions are drawn in Section 4. 

2. Modified Robust PCA 

2.1. Rank Estimation of Low-Rank Matrix 

Since the rank of a low-rank matrix is a very important 
parameter in weighted NNM problem, we borrow the idea 
of Gerschgorin disk theorem [23] to identify the rank when 
it is unknown. 

Assuming that there are @  observations with C 
elements, and each observation is transformed into a row 
through the stretching process, the @ samples thus form a (@ × C)  observation matrix E . If each row of the 
observation matrix is regarded as a one-dimensional signal F(�)  with the snapshot number C , then @  samples are 
viewed as @  signal sensors. In this way, the multiple 
sample processing is transformed into an array signal 
processing.  

Given a low-rank matrix �G  with rank � , it can be 
regarded as an array signal �G(�) = [H�(�), HI(�), ⋯ , H>(�)]. , 
which includes �  independent signals with C  snapshots 
from @ signal sensors. Thus the � independent signals can 
be defined as KL(�) = [M�(�), MI(�), ⋯ , MN(�)]. . The low-
rank matrix �G  is decomposed by SVD as follows: �G = '�G +�G -�GO                                        = ∑ P�G! �G!Q�G!ON!=�                          (6) 

where '�G = (P�G�, P�GI, ⋯ , P�GN) is the matrix consisting of  
left singular value vectors of �G  with P�G! ∈ ℝ>×�,  +�G =T"�U( �G�,  �GI, ⋯ ,  �GN) is the singular value matrix, -�G =(Q�G�, Q�GI, ⋯ , Q�GN) is the matrix consisting of right singular 
value vectors of �G  with Q�G! ∈ ℝV×�. 

Let W�G = '�G , and KL�G = +�G -�GO, the observation matrix is � = W�G KL�G  if the environment is noise-free. If outliers or 
corrupt noise 
G  occur in the environment, the observation 
matrix can be defined as � = W�G KL�G + 
G .                           (7) 

In view of Eq. (6), we define  �G!Q�G!O  to correspond to the "th  independent signal, and P�G!  to the " th signal’s array 
manifold of @  signal sensors. It is known from SVD 
principle that Q�G! are independent each other. It can be seen 
from [13] that 
G  is often sparse matrix and independent of 
the low-rank matrix, and each sample, i.e. each row in 
G , is 
also independent each other. Thus Eq. (7) is equivalent to 
the array output signal in the array signal processing [24] 
given by Z(�) = [\(�) + ](�).                    (8) 

In this way, the rank estimation problem of low-rank 
matrix is transformed into the problem of estimating the 
number of sources in the array signal processing. The 
information corresponding to each rank in the low-rank 
matrix can be equivalent to the information of the signal 
sent by each source in the array signal processing. 

The covariance matrix of the observation matrix � =[^�, ^I, ⋯ , ^V] with rank � can be defined as  _� = ��. .                                 (9) 
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Eigenvalue decomposition of _� is _� = '_�`_�'_ab ,                         (10) 

where '_� = [c�, cI, ⋯ , c>]  is the eigenvector matrix, 
and `_� = T"�U( �,  I, … ,  >) is the eigenvalue matrix. If 
there is no noise, the eigenvalues of _� are  � ≥  I ≥ ⋯ ≥  N >  N?� = ⋯ =  > = 0.     (11) 

Due to the interference of the sparse matrix in the real 
environment, the eigenvalues of the covariance matrix _� 
are  � ≥  I ≥ ⋯ ≥  N ≥  N?� ≥ ⋯ ≥  >.         (12) 

In order to accurately identify the rank of the low-rank 
matrix, the idea of the Gerschgorin’s disk theorem is 
employed. First the covariance matrix _� is partitioned as 

_� = ghii hij ⋯ hi>hji hjj ⋯ hj>⋮ ⋮ ⋱ ⋮h>i h>j ⋯ h>>
m = n_�i __o h>>p,   (13) 

where matrix _�i ∈ ℝ(>q�)×(>q�) is obtained by deleting 
the last column and row of _�. By defining each row of W�G  
in Eq. (7) as a vector, it can be rewritten as W�G = [r�, rj, ⋯ , r>]..                        (14) 

It is noted that _ in Eq. (13) can be expressed by _ = sh�>, hI>, ⋯ , h(>q�)>t.
 = [u�, uj, ⋯ , u>q�]._Kr>∗                          = W�_Kr>∗ ,                                          (15) 

where _K=KL�G KL�G .
 and W� = [r�, rj, ⋯ , r>q�]. .  

Next the eigenvalue decomposition of the covariance 
matrix _�i can be given by _�i = '�i+i'�ib ,                        (16) 

where '�i  is an (@ − 1) × (@ − 1)  unitary matrix 
composed of the eigenvectors of _�i as '�i = [vi, , vj, , ⋯ , v>q�, ],                 (17) 

and +i = T"�U{ �, ,  I, , ⋯ ,  >q�, }  is a diagonal matrix of 
eigenvalues of _�i . Similar to Eq. (12), the eigenvalues 
can be expressed as  �, ≥  I, ≥ ⋯ ≥  N, ≥  N?�, ≥ ⋯ ≥  >q�,

       (18) 

Following the idea in [25] that the eigenvalues in (12) 
and (18) satisfy the interlacing property:   � ≥  �, ≥  I ≥  I, ≥ ⋯ ≥  N ≥  N, ≥  N?� ≥  N?�,  ≥ ⋯ ≥  >q� ≥  >q�, ≥  >                 (19) 

One @ × @  unitary transformed matrix ' (''b = w) can 
be defined as ' = x'�i yy. iz.                            (20) 

Thus, the transformed covariance matrix is obtained by _{ = 'b_�' = |'�ib _�i'�i '�ib __o'�i h>> }           

= | +i '�ib __o'�i h>> }                                       

=
⎝
⎜⎜
⎛ �, 0 0 ⋯ 0 ��0  I, 0 ⋯ 0 �I0 0  �, ⋯ 0 ��⋮ ⋮ ⋮ ⋱ ⋮ ⋮0 0 0 ⋯  >q�, �>q���∗ �I∗ ��∗ ⋯ �>q�∗ h>> ⎠

⎟⎟
⎞

    (21) 

where �! = v!, b_ = v!, bW�_Kr>∗                    (22) 

for " = 1,2, ⋯ , @ − 1. 
The eigenvalues of _{  can be estimated by 

Gerschgorin’s disk theorem [23]. The radii of the first (@ − 1) Gerschgorin’s disks can be expressed as  �! = |�!| = �v!, bW�_Kr>∗ � = �v!, b_�          (23) 

for " = 1,2, ⋯ , @ − 1. 
By Cauchy-Schwartz inequality, we can obtain that �! = |�!| = �v!, bW�_Kr>∗ � ≤ �v!, bW�� ∙ |_Kr>∗ | = ��v!, bW��,      (24) 

where � = |_Kr>∗ | is independent of ". Then the radius �! 
of the "th Gerschgorin’s disk actually depends on the size 
of v!, bW�.  

If v!,  is the eigenvector of noise, the radius of the " th 
Gerschgorin’s disk will be significantly small and close to 
zero. If v!,  is the eigenvector of the low-rank part, the radius 
of the "th Gerschgorin’s disk will be far from zero. In this 
work, the rank is identified by the heuristic decision rule as ���(�) = �� − �(V)>q� ∑ �!>q�!=�                （25） 

where � = 1,2, ⋯ , @ − 2, and the adjustment factor �(C) 
(between 0 to 1) is a constant related to C. The rank of the 
low-rank matrix is � = � − 1  when ���(�)  is negative 
for the first time. This implies that the rank can be estimated 
by comparing the �th Gerschgorin’s disk radius �� with a 
threshold, which is equal to the product of the adjustment 
factor �(C) and the arithmetic mean of all Gerschgorin’s 
disk radius.  

To further improve the accuracy of the rank estimation, 
we propose a new method to shrink the radius of the 
Gerschgorin’s disk. The idea is to compress the radii of 
low-rank Gerschgorin’s disks and sparse Gerschgorin’s 
disks to different degrees, which benefits to discriminate 
between low-rank Gerschgorin’s disks and sparse ones. In 
light of Eq. (18),  !,  of the sparse Gerschgorin’s disk is 
significantly smaller than that of the low-rank 
Gerschgorin’s disk. Thus, the diagonal matrix �  can be 
constructed as follows: � = T"�U( �, ,  I, , ⋯ ,  >q�, ,  >, )               (26) 

where  >, = �∑  !,I>q�!=� . The new transformed matrix _{� 

can be obtained by _{� = �_{�q�  
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=
⎝
⎜⎜⎜
⎜⎛

 �, 0 ⋯ 0 ��,��, ��0  I, ⋯ 0 ��,��, �I⋮ ⋮ ⋱ ⋮ ⋮0 0 ⋯  >q�, ����,��, �>q���,��, ��∗ ��,��, �I∗ ⋯ ����,��, �>q�∗ h>> ⎠
⎟⎟⎟
⎟⎞

 (27) 

 
It is noted that _{� and _{ are similar matrices and their 

eigenvalues are the same. Given Eq. (27), the centers of the 
Gerschgorin’s disks are not changed, but the radii are 
compressed to various degrees. The radii of the sparse 
Gerschgorin’s disks are compressed more than those of the 
low-rank Gerschgorin’s disks. Then, we can estimate the 
rank by the improved heuristic decision rule as _W��(�) = ��∑ ��,������� n� �, ��� − �(�)(V)>q� ∑ � !,��!>q�!=� p  (28) 

where � = 1,2, ⋯ , @ − 2, and the adjustment factor 0 <�(�)(C) < 1 . The rank � = � − 1  if the first negative 
value of (28) is reached at �. 

It is highlighted that the parameter �(C) in Eq. (25) is 
manually set according to C. A very high or a very low 
adjustment factor yields inaccurate rank estimation. To this 
end, we define a new adjustment factor �(�)(C) by using 
the center of the Gerschgorin’s disk, which is given by  �(�)(C) = I�����, �

�∑ ��,�������  .                        (29) 

The value of �(�)(C)  is completely determined by the 
matrix _{� itself without heuristic selection. By using Eqs. 
(28) and (29), an automatic and improved method is 
accordingly developed for rank identification.  

2.2. Adaptive RPCA based on Iterative Rank Estimate 

In this subsection, a new adaptive RPCA, which updates 
the weights of singular values via iterative rank estimate, is 
proposed to recover the low-rank matrix from the corrupted 
measurements. Specifically, the low-rank recovery is 
achieved by solving the following optimization 
formulation: arg min�,
  ||�||; + �‖
‖�    �. �.   � = � + 
    (30) 

where ‖�‖; = ∑ <! !(�)!  and <!  are non-negative 
weights. Given the rank � estimated in the previous section, 
the proposed idea, different from the existing solutions [20], 
is to preserve the singular values within the target rank, i.e.  �2!2N  while minimizing the singular values outside the 
target rank, i.e.  N?�2!2>, such that the matrix � obtained by 
Eq. (30) is better close to the target low-rank matrix. Hence, 
we define the weight as <! = �0, " ≤ �1, F�ℎ�� "��                       (31) 

where �  is the rank of the low-rank matrix, which is 
estimated by Eq. (28). Thus only residual singular values 

are minimized, such that the recovered low-rank matrix has 
rank close to the estimated rank r.  

In general, the solution to Problem (30) has to been 
performed via iterative technique by fixing rank � . 
Different from such processing, the proposed menthod 
updates the rank r according to Eq. (28) in the iterative 
procedure. This reveals that the weights shown in Eq. (31) 
updates in each iteration accordingly. Hence, the 
optimization via Eqs (28)-(31) is called adaptive rank 
estimate based RPCA (ARE-RPCA). In other word, 
Eq.(28) provides an initial estimation of rank �, but the rank 
r is updated iteratively in solving Eq.(30). 

In this work, the alternating direction method of 
multipliers (ADMM) is employed to solve Problem (30). 
The augmented Lagrangian function of Eq. (30) can be 
written as ℒ(�, 
, ¢) = ‖�‖; + �‖
‖� + 〈¢, � − � − 
〉 +¥�‖� − � − 
‖%I                   (32) 

where 〈∙,∙〉 represents matrix inner product, ¦ is a positive 
penalty scalar, and ¢ is the Lagrangian multiplier. As it is 
difficult to solve the minimization of Eq. (32), an 
alternativesolution is to optimize one variable  while fixing 
the others. Accordingly, the optimization is divided into the 
following three sub-problems. 
 sub-problem: While both � and ¢ are fixed, Eq. (32) is 
equal to the following optimization problem: 
∗ = arg min
  �‖
‖� + 〈¢, � − � − 
〉 +¥�‖� − � − 
‖%I   = arg min
  §̈ ‖
‖� + ��‖
 − (� − � + ¦q�¢)‖%I      (33) �  sub-problem: Given 
  and ¢ , Eq. (32) leads to the 
following optimization problem: �∗ = arg min�  ‖�‖; + 〈¢, � − � − 
〉 + ¥�‖� − � − 
‖%I   = arg min� �̈ ‖�‖; + ��‖� − (� − 
 + ¦q�¢)‖%I      (34) ¢ sub-problem: ¢ is updated by ¢�?� = ¢� + ¦(� − ��?� − 
�?�).              (35) 

In order to solve the three sub-problems, a soft-
thresholding operator is introduced: 

©ª[«] ≐ ­« − ®,       "M « > ®« + ®,      "M « < −®0,             F�ℎ�� "��                    (36) 

where « ∈ ℝ and ® > 0. 
∗ in Eq. (33) can be obtained by 
the well-known analysis [26]: 
∗ = ©¥̄[� − � + ¦q�¢]                      (37) 

with the operation being element-wise. In order to solve the 
optimization (34), we first give the following lemma and 
theorems 

Lemma 1 If °, � ∈ ℝ6×7 satisfy °.� = 0, we have ‖° + �‖; ≥ ‖°‖;                           (38) ‖° + �‖% ≥ ‖°‖%                             (39) 

where ‖∙‖; is defined in Eq. (4). Detailed proof of Lemma 
1 is demonstrated in Supplementary Materials.  
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Theorem 1 Given ± ∈ ℝ6×7  where ± = '±�±-±. , the 
solution to the minimization problem  arg min² �I ‖² − ±‖%I + &‖²‖;                (40) 

is ²³ = '±³̀²-±. , where ³̀² is the solution of the following 
optimization problem: ³̀² = arg min³̀²

�I ´³̀² − �±´%I + &´³̀²´;.        (41) 

Based on Theorem 1, we obtain the following important 
result. 

Theorem 2 Given  & > 0 , ², ± ∈ ℝ6×7  where  ± ='±�±-±. , �± = T"�Uµ¶±�, ⋯ , ¶±N , ¶±(·?�), ⋯ , ¶±ℓ¸  and ℓ = ¹"
(¹, 
) . We can define  ± = ±� + ±I , ±� ='±��±�-±�.  and ±I = '±I�±I-±I. , where �±� =T"�Uµ¶±�, ⋯ , ¶±N , 0, ⋯ ,0¸ , '±�  and -±�  are the singular 
vector matrices corresponding to the �th largest singular 
values,  �±I = T"�Uµ0, ⋯ ,0, ¶±(·?�), ⋯ , ¶±ℓ¸ , '±I  and -±I corresponding to the singular values from (� + 1)th to 
the last. ‖∙‖; is defined as shown in Eq. (30) and Eq. (31). 
The optimal solution to the minimization problem arg min² �� ‖² − ±‖%I + &‖²‖;                 (42) 

can be expressed as ²∗ = º),;[±] = '±µ�±� + ©)s�±It¸-±.  = ±� + '±I©)s�±It-±I.  .    (43) 

Refer to Supplementary Materials for detailed proofs of 
Theorem 1 and Theorem 2 due to space limitation.  

In light of Theorem 2, �∗ in Eq. (34) can be obtained by �∗ = º�¥,;[� − 
 + ¦q�¢].                    (44) 

The entire procedure to solve problem (30) is summarized 
in Algorithm 1. 

 
Algorithm 1 Adaptive rank estimate based RPCA (ARE-
RPCA): 

 
Input: � ∈ ℝ6×7 , � = 1 »max (¹, 
)⁄ ; 

1: Initialization: 
� = ¢� = y ∈ ℝ6×7 , �  is estimated 
by Eq. (28), ¦ = 1  N⁄ , and <! is defined by Eq. (31); 
2: while not converged do 
3:  compute ��?� = º�¥,;[� − 
� + ¦q�¢�];  
4:  compute 
�?� = Σ¥̄[� − ��?� + ¦q�¢�]; 
5:  compute ¢�?� = ¢� + ¦(� − ��?� − 
�?�); 
6:  update � and <!  according to Eq. (28) and Eq. 

(31), respectively; 
7: end while 
8: output: �, 
. 

 
Remark 1: In Algorithm 1, the parameter � is set as � =1 »max (¹, 
)⁄ , which is recommended in RPCA. The 

iteration is terminated when ||� − � − 
||% ≤10q½||�||%. 
Remark 2: It is noted that ¦q� occurs in singular value 

Figure 1 The value of ¾�, ¾
 and ¾�with the number of iterations. 
Assuming that � ∈ _6×7 , ¹ = 10000, 
 = 20, ��
�(�) = 3, 
and the corrupted rate ¿ = 0.05.   

Table 1 Number of iterations, CPU time, � and 
 reconstruction 

error for LSD, LRSD, RPCA, SRPCP, WNNM, ARE-RPCA 

Table 2: The rank of low-rank matrix � decomposed by LSD, 

LRSD, RPCA, SRPCP, WNNM and ARE-RPCA for different 

value of corrupt rate ¿ 
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thresholding operators. When ¦q�  is small, a large 
proportion of singular values of � − 
� + ¦q�¢�  would 
exceed the threshold and make the rank of �∗ be too large. 
In classical RPCA, it is simply chosen as ¦ =m × n 4‖�‖�⁄ , which is not related with singular values. 
In this work, we select the size of ¦ by ¦ = 1  N⁄ , where  N is the �th singular value of �. 

Remark 3: It should be noted that the proposed 
alternative Algorithm 1 follows the framework of inexact 
augmented Lagrangian multiplier (IALM) [27]. However, 
the weights in Eq. (30) are given by Eq. (31) and the 
underlying problem is usually nonconvex. Although 
mathematical proof of the convergence is challenging, the 
following empirical claim is provided. 

Claim 1: The sequences {��}  and {
�}  generated by 
Algorithm 1 satisfy: ¾� = lim�→Ä‖��?� − ��‖% = 0 ¾
 = lim�→Ä‖
�?� − 
�‖% = 0 

¾� = lim�→Ä‖� − ��?� − 
�?�‖% = 0 

Claim 1 has been proved by the experiment shown in Fig. 
1. 

3. Experimental Results 

In this section, we report the experimental results of our 
adaptive rank estimate based RPCA (ARE-RPCA), and 
compare it with the state-of-the-art RPCA algorithms 
(RPCA [2], WNNM [20], SRPCP [28], LSD [29] and 
LRSD [30]). All the experiments are conducted on a laptop 
equipped with Windows 10, AMD Ryzen 7 4800H (8 Cores 
at 2.9 GHz) and 16GB DDR4-3200Mhz RAM, and running 
in MATLAB R2018b. 

3.1. Synthetic Datasets 

In this subsection, we test the algorithms on synthetic 
data. A matrix � ∈ ℝ6×7  with rank ��  is generated by 
sampling two matrices, ²Å ∈ ℝ6×NÆ  and ±Å ∈ ℝNÆ×7  with 

Figure 2 PSNR for various algorithms with different sample sizes 
, matrix ranks ��, and corrupt rate ¿. 
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entries belonging to normal distribution Ç(0, 1), namely, � = ²Å±Å . In this experiment, we set ¹ = 10000 . The 
ground truth matrix �  is corrupted by sparse noise 
 ∈ℝ6×7 , which has ¿ × (¹ × 
)  non-zero elements. The 
positions of non-zero elements in 
 are randomly selected, 
and its value is generated from a Gaussian distribution Ç(0, 1) . Therefore ， we generate synthetic data �  as 

follows: �!,È = �!,È + 
!,È .                                       

We first evaluate the peak signal to noise ratio (PSNR) 
under different settings such as different sample sizes 
 ∈{20, 40, 60} , different matrix ranks �� ∈ {1, 3, 5} , and 
different corrupt rate of ¿ from 0.05 to 0.3. The simulation 
results are shown in Fig. 2. It is observed from Fig. 2 (a - c) 
that when the sample sizes 
 is small, both our proposed 
ARE-RPCA and WNNM outperform others, but ARE-
RPCA is better than WNNM in the case of a lower corrupt 
rate (¿ ≤ 0.05). 

By comparing Fig. 2 (a, d, g), Fig. 2 (b, e, h) and Fig. 2 
(c, f, i), it can be seen that the performance of all algorithms 
is gradually enhanced with the increase of 
 under the same 
rank. However, the performance of the proposed ARE-
RPCA algorithm is better than others in most cases except 
for the large number of samples and large rank where ARE-
RPCA is slightly weaker than WNNM. However, WNNM 
algorithm has the disadvantage that it needs to adjust one 
regularization parameter C in weight updating <! =¾ ( !(�)⁄ + Ê) (see the details in [20], this parameter is 
manually adjusted to the optimal values according to 
different actual environments in this paper). ARE-RPCA 
algorithm has strong adaptability because it does not need 
to be adjusted for different application scenarios. 

Next, we evaluate the number of iterations, running time, 
reconstruction error of low-rank matrix � and sparse matrix 
 . Denote the solution as �ÅËÌ  and 
ÅËÌ  in a certain 
algorithm and define the reconstruction error as �·Í =||�ÅËÌ − �||% ||�||%⁄  and 
·Í = ||
ÅËÌ − 
||% ||
||%⁄ . The 
test results are presented in Table 1. It can be seen that 
Although our ARE-RPCA is the fastest among all 
algorithms although it has more iterations than SRPCP and 
LRSD. It also can be seen that there is almost no difference 
in the reconstruction error of sparse matrix 
 , but the 
reconstruction error of low-rank matrix �  of our ARE-
RPCA is obviously less than others. 

Finally, we consider the rank of the low-rank matrix � 
decomposed by different algorithms under different 
corruption rates. Setting 
 = 20 and �� = 5, the test results 
are shown in Table 2. It can be observed that our ARE-
RPCA and WNNM can obtain correct rank of low-rank 
matrix in all cases even with large corruption rates. Other 
algorithms can estimate the rank correctly only if the 
corruption rate is low. Overall, our proposed ARE-RPCA is 

                                                           
1 The Street dataset is provided in the supplementary materials. 

fast and highly accurate. 

3.2. Real Datasets 

In this subsection, we compare the performance of ARE-
RPCA, WNNM, RPCA, FFP [31], MoG-RPCA [32] on two 
real world benchmark problems: video background 
subtraction and low dynamic range imaging.  

The task of background subtraction is to separate the 
moving foreground object from the static background. We 
choose a Street dataset 1  that has a relatively static 
background and a walking person as a dynamic foreground. 
The size of each frame of the Street dataset is 1920 × 1080. 
The total number of frames are 48 in the Street dataset. The 
dataset can be represented by a matrix, where each column 
of the matrix is a vectorized frame of the video. Then we 
apply each algorithm to decompose the matrix into low-
rank parts representing the static background of the video 
and sparse parts representing the moving objects in the 
video. The results are shown in Fig. 3. RPCA cannot well 
separate the foreground from the background as shown in 
Fig. 3 (c). It can be seen from Fig. 3 (a) that FFP has better 

Figure 3 Video background subtraction: the top row corresponds 

to one frame from the video. The second to last rows are the 

separated background and foreground of FFP, MoG-RPCA, 

RPCA, WNNM and ARE-RPCA, respectively. 

6583



 
 

 

performance than RPCA, but it still cannot completely 
separate the foreground from the background. From Fig. 3 
(b), it can be seen that MoG-RPCA has better performance 

                                                           
1 http://alumni.soe.ucsc.edu/~orazio/deghost.html 

on the blue and green components, but it has poorer 
performance on the red component. As shown in Fig. 3(d, 
e), one can see that both WNNM and ARE-RPCA can 
effectively separate the foreground and background, and 
our proposed ARE-RPCA is better than WNNM. 

In order to obtain high-contrast scene images, low 
dynamic range (LDR) imaging technology needs to be used 
to remove out-of-focus blur and dynamic objects in pictures 
captured by low dynamic range cameras. We select the 
Arch dataset1 [33] and stack each image as a column into a 
matrix. The size of each frame of the Arch dataset is 669 ×1024. The total number of frames are 5 in the Arch dataset. 
Then we can use each algorithm to decompose the matrix 
into a low-rank part representing the scene and sparse part 
representing dynamic objects. The experimental results are 
shown in Fig. 4. It can be seen from Fig. 4 (c) that RPCA 
cannot remove moving objects well. From Fig. 4. (a), FFP 
has a better effect, but still has a larger ghost image. It can 
be seen from Fig. 4(b) that MoG-RPCA cannot effectively 
remove the moving objects in the red component. As shown 
in Fig. 4 (d, e), one can observe that both WNNM and ARE-
RPCA can effectively remove moving objects, and our 
proposed ARE-RPCA handles ghosting better. 

4. Conclusions 

Robust principal component analysis (RPCA), due to its 
powerful capability in dealing with outliers, has been 
gained wide applications in computer vision. To cope with 
the issues that some RPCA variants need predefine the rank 
of low-rank matrix and manually adjust some parameters, 
an adaptive rank estimate based RPCA (ARE-RPCA) is 
proposed in this paper. Specifically, the rank of a low-rank 
matrix is identified via Gerschgorin disk method. To avoid 
setting adjustment factor in Gerschgorin disk method, an 
improved rank estimation algorithm is proposed. On the 
other hand, a novel RPCA method with weight updating 
based on the iteratively estimated rank is proposed to 
recover the low-rank structure of a data matrix and the 
sparse representation from corrupted data, which makes our 
improved algorithm accurate and effective. Experimental 
results on synthetic data demonstrate that the identified rank 
is close to the ground truth, and the results on real data 
indicate that the proposed ARE-RPCA outperforms the 
state-of-the-art methods in terms of efficiency and accuracy. 
The proposed method will greatly facilitate RPCA in real 
applications. 
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Figure 4 Low-Dynamic Range Imaging: the top row corresponds 

to one frame of a sequence with differently exposed changes. 

The second to last rows are the separated static part and dynamic 

part of FFP, MoG-RPCA, RPCA, WNNM and ARE-RPCA, 

respectively. 
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