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Abstract

Convolutional network compression methods require

training data for achieving acceptable results, but train-

ing data is routinely unavailable due to some privacy and

transmission limitations. Therefore, recent works focus on

learning efficient networks without original training data,

i.e., data-free model compression. Wherein, most of ex-

isting algorithms are developed for image recognition or

segmentation tasks. In this paper, we study the data-free

compression approach for single image super-resolution

(SISR) task which is widely used in mobile phones and

smart cameras. Specifically, we analyze the relationship

between the outputs and inputs from the pre-trained net-

work and explore a generator with a series of loss func-

tions for maximally capturing useful information. The

generator is then trained for synthesizing training sam-

ples which have similar distribution to that of the origi-

nal data. To further alleviate the training difficulty of the

student network using only the synthetic data, we intro-

duce a progressive distillation scheme. Experiments on var-

ious datasets and architectures demonstrate that the pro-

posed method is able to be utilized for effectively learn-

ing portable student networks without the original data,

e.g., with 0.16dB PSNR drop on Set5 for ×2 super resolu-

tion. Code will be available at https://github.com/huawei-

noah/Data-Efficient-Model-Compression.

1. Introduction

Deep convolutional neural networks have achieved huge

success in various computer vision tasks, such as image

recognition [12], object detection [26], semantic segmen-

tation [27] and super-resolution [7]. Such great progress

largely relies on the advances of computing power and stor-

age capacity in modern equipments. For example, ResNet-

50 [12] requires a ∼98MB storage and ∼4G FLOPs. How-

ever, due to the heavy computation cost of these deep mod-
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els, they cannot be directly embedded into mobile devices

with limited computing capacity, such as self-driving cars,

micro-robots and cellphones. Therefore, how to compress

CNNs with enormous parameters and then apply them on

resource-constrained devices, becomes a research hotspot.

In order to accelerate the pre-trained heavy convolutional

networks, various attempts have been made recently, in-

cluding quantization [24], NAS [5, 39], pruning [25, 34],

knowledge distillation [37, 38] and etc. For example, Han et

al. [11] utilize pruning, quantization and Huffman coding to

compress a deep model with extremely higher compression

and speed-up ratio. Hinton et al. [14] propose knowledge

distillation, which learns a portable student network from

a heavy teacher network. Luo et al. [29] propose ThiNet

to perform filter pruning by solving an optimization prob-

lem. Courbariaux et al. [6] propose binary neural network

with only binary weights and activations to extremely re-

duce the networks’ computation cost and storage consump-

tion. Han et al. [10] introduce cheap operations in Ghost-

Net to generate more features for lightweight convolutional

models.

Although the compressed models with low computation

complexity can be easily deployed in mobile devices, these

techniques require original data to fine-tune or train the

compressed networks to achieve comparable performance

with the pre-trained model. However, the original train-

ing data is often unavailable due to some privacy or trans-

mission constraints. For example, Google shared a series

of excellent models trained on the JFT-300M dataset [20]

which is still unpublic. In addition, there are considerable

apps trained using privacy-related data such as face ID and

voice assistant, which is often not provided. It is very hard

to provide model compression and acceleration service for

these models without the original training data. Therefore,

existing network compression methods cannot be well per-

formed.

To this end, recent works are devoted to compress and

accelerate the pre-trained heavy deep models without the

training dataset, i.e. data-free model compression. Lopes et

al. [28] first propose to use meta data to reconstruct the orig-
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Figure 1. Framework of the proposed data-free knowledge distillation. The generator is trained with reconstruction loss and adversarial

loss to synthesize images that similar with the original data. The student network is then obtained utilizing progressive distillation from the

teacher network.

inal dataset for knowledge distillation. Nayak et al. [32]

present zero-shot knowledge distillation, which leverages

the information of pre-trained model to synthesize useful

training data. Chen et al. [4] exploit Generative Adversarial

Networks (GAN) to generate training samples which have

similar distribution with the original images and achieve

better performance. Yin et al. [40] propose DeepInversion

and successfully generate training data on the ImageNet

dataset. However, they only focus on image recognition

tasks with sophisticated loss function, e.g., the one-hot loss

for capturing features learned by the conventional cross-

entropy loss. Differently, the training of SISR models does

not involve the semantic information, the ground-truth im-

ages are exactly the original high-resolution images. Thus,

the existing data-free compression approaches cannot be di-

rectly employed.

To this end, we propose a new data-free knowledge dis-

tillation framework for super-resolution. A generator net-

work is also adopted for approximating the original training

data from the given teacher network. Different from the

classification networks whose outputs are probability dis-

tributions, the inputs and outputs of SR models are images

with similar patterns. Therefore, we develop the reconstruc-

tion loss function by utilizing this relationship. In prac-

tice, we have to ensure that the synthetic images will not be

distorted significantly by the teacher SR network, i.e., the

super-resolution results of these images should be similar

to themselves. Moreover, an adversarial loss is combined

to prevent the model collapse of the generator. Since SISR

models are often required to capture and emphasize details

such as edge and texture from the input images, the learn-

ing on intermediate features is also very important. Thus,

we propose to conduct the distillation progressively to alle-

viate the training difficulty. We then conduct a series of ex-

periments on several benchmark datasets and models. The

results demonstrate that the proposed framework can effec-

tively learn a portable network from a pre-trained model

without any training data.

The rest of this paper is organized as follows. Section

2 investigates related work about model compression in

super-resolution and data-free knowledge distillation meth-

ods. Section 3 introduces our data-free distillation method

for image super-resolution. Section 4 provides experimen-

tal results on several benchmark datasets and models and

Section 5 concludes the paper.

2. Related Work

In this section, we briefly review the related works on

data-driven knowledge distillation for super-resolution net-

works and data-free model compression approaches.

2.1. Data­Driven Knowledge Distillation for Super­
Resolution

As there are urgent demands for applying image super-

resolution networks to the mobile devices such as cell-

phones and cameras, various attempts have been made to

learn lightweight super-resolution models.

Gao et al. [9] calculate different statistical maps of fea-

ture maps to distill from teacher super-resolution networks.

He et al. [13] propose a feature affinity-based knowledge

distillation (FAKD) framework for super-resolution net-

works, which improves the distillation performance by us-

ing the correlation within a feature map. Lee et al. [22]

propose to utilize ground truth high resolution images as

privileged information and use feature distillation to im-

prove the performance of compact super-resolution net-

work. To enhance the performance of lightweight super-

resolution networks, Zhang et al. [42] introduce the con-
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cept of learnable pixel-wise importance map, and use pre-

diction of teacher network to initialize the importance map.

In addition, Hui et al. [16] and Jiang et al. [17] design new

structures to perform distillation between different parts of

the model and improve the performance of the lightweight

super-resolution network.

The compressed models obtained by the aforementioned

methods can achieve promising performance with low com-

putation cost. However, launching these techniques requires

the original training dataset. In practice, the training dataset

is often unavailable due to the privacy or transmission con-

cerns. Therefore, it is essential to explore the data-free

model compression methods.

2.2. Data­Free Model Compression

There are lot of works focusing on data-free model com-

pression, i.e., learning a portable network without any train-

ing data. Lopes et al. [28] realize a data-free knowledge

distillation method for classification by generating samples

only based on some meta data stored during distillation.

Similarly, Bhardwaj et al. [3] calculate centroids of classes

by using part of real dataset and then generate distillation

data to distill from teacher network. Both these methods

exploit meta data of training datasets and iterate to update

the input noise images to synthesize samples for distillation.

There are also some methods which propose a purely

data-free distillation framework, i.e., without any training

datasets or meta data. Nayak et al. [32] model the out-

put of teacher network as a dirichlet distribution and iter-

ate the input noise images to obtain training samples. This

method performs well in MNIST, but gets more than 10%

accuracy drop in Fashion MNIST [36] and CIFAR-10 [21]

when compared with baselines that were trained with origi-

nal data.

Different from optimizing noises images iteratively,

Chen et al. [4] exploit GAN to generate training samples

by optimizing the parameters of the generator network via

the customized one-hot loss, information loss and activation

loss based on characteristics of classification. This data-free

learning method (DAFL) provides a novel framework and

gets less than 5% accuracy drop in CIFAR-10 and CIFAR-

100. Addepalli et al. [1] propose DeGAN, which uses gen-

erator to synthesize images and utilizes test data to improve

the quality of images. Similarly, Paul et al. [31] and Fang et

al. [8] also use generator to generate images for training.

Unlike DAFL [4] which treats generation and distillation as

separate procedures, these methods consider them as two

competing process, forcing generator to produce images to

make student’s outputs differ from teacher while the stu-

dent is trained to imitate teacher network. Their methods

perform well both in classification and segmentation tasks.

Yin et al. [40] propose a method that combines updat-

ing noise images and adversarial loss between teacher and

student for classification tasks. In addition, based on the ob-

servation that Batch Normalization (BN) layers which con-

tain channel-wise means and variances of training dataset

are widely used in classification neural networks, they pro-

pose to use these BN data to inverse teacher network and

generate samples. This method provides comparable per-

formance in classification and generates samples that are

very similar to natural images.

Although these methods can successfully compress net-

works without any data, most of them focus on image recog-

nition tasks and design specific loss functions to inherit

useful information from the pre-trained networks, which

cannot be transferred to other tasks such as image super-

resolution.

3. Data-Free Learning for Super-resolution

To provide better compressed models while protecting

user privacy, we propose a data-free knowledge distillation

framework for super-resolution networks.

3.1. Training Samples Generation

Let T be a pre-trained teacher super-resolution network,

which has desired super-resolution visual effect but is dif-

ficult to be used in mobile devices. Let S be the student

network, which has desired speed in mobile devices and its

structure can be customized based on hardware capabilities.

By applying knowledge distillation, the student network

is trained by the following function:

LKD = Ex∈px(x)[‖T (x)− S(x)‖1], (1)

where x is the training sample and px(x) is the distribution

of the original dataset. However, we cannot train the stu-

dent network S when the original training sample x is not

available.

To adjust this problem, recent works [4, 8] propose to

utilize a generator to synthesize training samples. How-

ever, these methods design special loss function to cap-

ture the distribution of training data in classification net-

works, which cannot be applied in image super-resolution

tasks. Thus, we want to use the fundamental characteristic

of super-resolution networks to help generator produce im-

ages similar with the real images. In super-resolution tasks,

models take low-resolution images as input and output high-

resolution images. Compared with low-resolution images,

high-resolution images have more pixels and add more de-

tails while preserving all information of low-resolution im-

ages. In other words, if we down-sample a high-resolution

image to the size same as its corresponding low-resolution

image, the two images should be the same theoretically.

Specifically, given a low-resolution image IL ∈
RH×W×C and a pre-trained super-resolution model, we

can get its super-resolution result IS ∈ RsH×sW×C . Then
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Algorithm 1 Algorithm with Progressive Distillation

Input: A pre-trained super-resolution teacher model T ; P
indicates the number of student body segments; M de-

notes batchsize; p(z) denotes noise prior.

1: Initialize: Randomly initialize a student model

S(x; θs) and a generator G(x; θg)
2: Initialize the Set {Si(x; θ

s)}0≤i<P,i∈N+ based on

S(x; θs) and G(x; θg) randomly.

3: for k = 0 to P do

4: Initialize Sk ← Smax(k−1.0).

5: for number of training iterations do

6: Imitation Stage:

7: for k steps do

8: Sample noise images {zi}i≤M from p(z).
9: Get generated images {G(zi)} ← {zi} .

10: Obtain SR results {T (G(zi))}, {Sk(G(zi))}.
11: Calculate loss LSk

via Eq. (5).

12: Update θsk with ∇LSk
.

13: end for

14: Generation Stage:

15: Repeat step 8 ∼ 10.

16: Calculate loss LG with (4).

17: Update θg with ∇LG.

18: end for

19: end for

Output: Output the trained student network S(x; θs).

we can scale the high-resolution image IS to the low-

resolution size and get ISL ∈ RH×W×C . H,W,C indicate

the height, the width and the channel of IL respectively. s
indicates the super-resolution scale. Considering that low-

resolution images are generally obtained by the interpo-

lation of high-resolution images in most super-resolution

network training process, while given a well-trained super-

resolution model, we hold that ISL and IL should be con-

sistent when IL is a natural dataset image. To distill from

teacher super-resolution network efficiently, generator G is

expected to produce samples which follow the distribution

of the dataset.

Denote G as the generator to produce training samples,

given a random variable z from a distribution pz as input,

the image synthesized by the generator network is G(z).
The super-resolution result of G(z) using teacher network

T is T (G(z)). Then we rescale T (G(z)) to the size of G(z)
and get R(T (G(z))). Generator G is expected to produce

samples which follow the distribution of the dataset and for

a dataset image IL, its ISL stays consistent with itself, then

R(T (G(z))) should be consistent with G(z). Therefore we

propose a reconstruction loss for the generator, which is for-

mulated as Eq. (2):

LR = Ez∈pz(z)[
1

n
‖R(T (G(z)))− G(z)‖1], (2)

where R(·) denotes 1/s times interpolation.

However, directly applying Eq. (2) to the generator may

converge to a trivial solution: the generator will produce

a single image which satisfies this loss function. In this

situation, the generator cannot synthesize a set of different

samples for distilling the student network. Therefore, we

introduce the adversarial loss to maintain the diversity of

training samples.

Inspired by DFAD [8], we use the adversarial loss to dis-

till from teacher super-resolution networks without access

to the original dataset or any related datasets. The generator

network is optimized to produce hard samples to maximize

the model discrepancy between teacher and student. The

adversarial loss LGEN is formulated as:

LGEN = −log(LKD + 1), (3)

where the log function is used to slow down the training of

the generator and make training more stable. Therefore, the

loss function to optimize the generator can be formulated

as:

LG = LGEN + wRLR, (4)

where wR is the trade-off hyper-parameter to balance the

two terms.

3.2. Progressive Distillation

While training student by distilling from teacher without

true data, we expect the output of generator to obey the dis-

tribution of training datasets. In the scenario where no data

is available, it’s difficult to train student network directly

by distilling information from teacher network. Consider-

ing that most super resolution networks have many blocks

or layers, to better train the student network, we propose

to train a tiny network firstly. This tiny network has simi-

lar structure with student network but less parameters to be

trained. Thus it is much easier for the tiny network to be

optimized. Then with the trained tiny network, we increase

the number of layers or blocks gradually and train the pa-

rameters in those new layers or blocks sequentially. With

this progressive distillation method we can distill more in-

formation from teacher network and train student network

better.

More specifically, for a super resolution network S , its

function can be formulated as S(x) = ST (SB(SH(x))),
where x indicates the input of S , SH , SB and ST indicate

the head, body and tail of S respectively. Given that SB
contains N layers or blocks, we can split it into P parts

{Bi}0≤i<P,i∈N+ and train {Bi}0≤i<P,i∈N+ in P steps. Ini-

tially, based on SH , ST and B0, we build a network S0 and

initialize it randomly. The function of S0 can be formulated

as S0(x) = ST (B0(SH(x))). In the process of training S0,

the knowledge distillation loss is S0 formulated as:

LKDSi
= Ez∈pz(z)[

1

n
‖T (G(z))− Si(G(z))‖1], (5)
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Table 1. Quantitative results (PSNR/SSIM) of VDSR in different experimental settings.

Dataset Scale

VDSR

Teacher Student Bicubic Noise Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set5

×2 37.59 0.9597 37.36 0.9588 33.69 0.9308 34.38 0.9376 37.20 0.9582

×3 33.75 0.9232 33.50 0.9209 30.41 0.8692 30.53 0.8711 33.13 0.9172

×4 31.40 0.8854 31.17 0.8819 28.43 0.8114 28.46 0.8120 30.71 0.8728

Set14

×2 33.16 0.9140 32.97 0.9127 30.34 0.8701 30.81 0.8821 32.84 0.9109

×3 29.92 0.8343 29.81 0.8323 27.64 0.7757 27.74 0.7780 29.63 0.8291

×4 28.14 0.7706 28.01 0.7675 26.10 0.7044 26.12 0.7050 27.73 0.7617

B100

×2 31.91 0.8964 31.79 0.8950 29.56 0.8437 30.07 0.8603 31.56 0.8920

×3 28.84 0.7983 28.74 0.7961 27.21 0.7391 27.27 0.7417 28.56 0.7920

×4 27.28 0.7256 27.21 0.7234 25.96 0.6680 25.97 0.6686 27.03 0.7187

Urban100

×2 30.79 0.9147 30.48 0.9111 26.88 0.8407 27.27 0.8523 29.74 0.9017

×3 27.16 0.8291 26.92 0.8229 24.46 0.7351 24.55 0.7380 26.37 0.8081

×4 25.20 0.7533 25.01 0.7467 23.14 0.6577 23.16 0.6584 24.54 0.7298

where 0 ≤ i<P, i ∈ N. After training S0 for several

steps, we add B1 into S0 and get S1, which performs as

S1 = ST (B1(B0(SH(x)))). Then when training S1, we

initialize S1 with trained S0 and use the strategy of training

S0 to train S1. We repeat this training process until SP−1 is

trained. The architectures in different steps and the way its

initialized are shown in Figure 1.

3.3. Optimization

By combining all the aforementioned loss functions and

the progressive distillation method, we obtain the final ob-

jective functions Eq. (4) for generator and Eq. (6) for stu-

dent respectively.

LS = LKDSP−1
. (6)

Our training strategy is summarized as Algorithm. 1.

We apply an iterative and progressive training strategy to

optimize generator G and student network S . While given

student network S and the number of segments of student

network body P , we construct a set of tiny student net-

works {Si(x; θ
s)}0≤i<P,i∈N+ as discussed in the Section

3.2. Then we train {Si} in turn and initialize Si+1 with

trained Si. The training process of Si and G are performed

alternately. In one iteration, we fix the generator G, calcu-

late knowledge distillation loss with Eq. (5) and then update

the parameter of Si via backward propagation. After updat-

ing Si for several steps, we fix the parameter of Si and cal-

culate Eq. (4) to optimize G. It’s worth noting that when we

start training Si+1, the generator G will not be reinitialized.

After all the networks in {Si(x; θ
s)}0≤i<P,i∈N+ are trained

according to the preceding procedure, the training process

of our student network S is complete.

4. Experiments

In this section, we conduct extensive experiments to

verify the effectiveness of the proposed data-free distilla-

tion method on various super-resolution datasets. Quantita-

tive and qualitative results are compared with baselines of

VDSR [18] and EDSR [23].

4.1. Baselines

A bunch of baselines is compared to demonstrate the

effectiveness of our proposed method. The baselines are

briefly described as follows.

Teacher: the given pre-trained model which serves as

the teacher in the distillation process.

Student: the student trained with original training data.

Noise: the student trained with randomly generated

noise images.

4.2. Experiments on VDSR

Firstly, we experiment with our method on VDSR [18].

We choose VDSR model as the teacher super-resolution

model, and then halve the number of channels in teacher

network to get our student network (denoted as VDSR-

half). Same with [18], we use 291 images as in [33] for

training and Set5 for validation in our experiments. Be-

sides, we make some modifications to the generator in [4]

and use it as our generator. Specifically, we remove the last

BN layer and replace the remaining BN layers with instance

normalization (IN) layers.

Our method is implemented based on the open source

Pytorch code of VDSR1 and experiments are conducted on

a NVIDIA V100 GPU. The optimizers for student and gen-

erator are SGD and Adam, respectively. Different from

1https://github.com/twtygqyy/pytorch-vdsr
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Figure 2. ×4 super resolution results of img066 and img061 from Urban100 on VDSR.

41 × 41 images used for training in VDSR [18], we pro-

cess 48×48 images instead to distill a single student model

for multiple scales. In particular, we use 3 generators corre-

sponding to 3 super resolution scale to generate images for

distillation. The output size of each generator is calculated

as r = 48/scale. At each update of training, we randomly

select a scale among ×2, ×3 and ×4. Only the generator

that corresponds to the selected scale is enabled to construct

the mini-batch and updated. The student network and all

generators are randomly initialized. During the optimiza-

tion, for student network, the learning rate is initially set to

0.1 and then decreased by a factor of 10 every 10 epochs.

For generator, the learning rate is initially set to 1e-5 and

attenuated according to the same policy as that of student

network. Additionally, throughout the training process, we

process 120 iteration each epoch and in each iteration, we

first update student network 50 times then update the gen-

erator 1 time. The reconstruction weight wR is set to 1.0.

In addition, VDSR is divided to 2 parts and trained in two

stages. The first phase trains 12 epochs and then the total

network is trained for 68 epochs.

Table 1 shows the performance of the student model ob-

tained with different methods. In this table, Teacher indi-

cates the pre-trained teacher model, Student indicates the

student model that is trained on original dataset, and Noise

indicates that we use images random sampled from uni-

form distribution for distillation. As is shown in the table,

our method performs significantly better than training with

random noise images, and achieves results close to train-

ing with original dataset. For example, the student model

trained with our method gets only 0.16dB decrease on Set5

for scale 2 compared with training with original dataset.

The visual qualities of the same architecture using differ-

ent training strategies are shown in Figure 2. Our method

shows similar visual quality with student trained with origi-

nal dataset and performs better than training with noise im-

ages and bicubic results.

In Figure 3, we visualize several images that are syn-

thesized by generators and their corresponding super res-

olution results by teacher network. Considering that the

channel number of data processed by VDSR is single, we

concatenate three synthetic images to obtain better visual

effects. The corresponding SR results are also concatenated

together.

4.3. Ablation Experiments

Here we will conduct the detailed ablation study to illus-

trate the effectiveness of different components in our pro-
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Figure 3. Samples of images that synthesized by generators.
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Figure 4. The influence of reconstruction weight on Set5 ×2.

posed method. Results are shown in Table 2.

The ablation experiments are also conducted on VDSR.

We use VDSR as a teacher network and VDSR-half as a

student network. The training settings are the same as those

in Section 4.2. Table 2 reports the results of various design

components for scale 2. M1 denotes distillation with images

sampled from random uniform distribution and achieves

PSNR of only 34.38dB. When further training the gener-

ator with the reconstruction loss, we observe 2.67dB PSNR

improvement. If we train the generator with DFAD[8], the

PSNR is 36.23dB. Combining the adversarial loss and re-

construction loss (M3) results in significant better perfor-

mance with 37.09dB PSNR. The results of M4 and M2 illus-

trate the effectiveness of the proposed reconstruction loss.

Further applying progressive distillation method brings in

another 0.11dB increase, which demonstrates that the pro-

posed progressive distillation can further improve perfor-

mance.

Then we examine the impact of the weight for recon-

struction loss, i.e. wR. As is shown in Figure 4, while

increasing wR from 0 to 3, the PSNR on Set5 for ×2 in-

creases, then slightly decreases, and then remains stable.

When the weight is set to 1, we get the best results.

Table 2. Effectiveness of different components of the proposed

data-free learning method on VDSR for scale 2. AD means adver-

sarial loss, RS indicates reconstruction loss and PD is progressive

distillation.
Model AD RS PD Set5

M1 × × × 34.38

M2 × √ × 37.05

DFAD[8]
√ × × 36.23

M3
√ √ × 37.09

M4
√ × √

36.12

Ours
√ √ √

37.20

Table 3. Model specifications in EDSR.

Options Student Teacher

Residual Blocks 32 32

Filters 128 256

Residual Scaling 0.1 0.1

4.4. Experiments on EDSR

We also conduct experiments on EDSR, which is pro-

posed by Lin et al. [23] in 2017 and widely used in super-

resolution community. We choose EDSR models as our

teacher super-resolution models and tiny models with half

channels (EDSR-half) as our student models. Following the

setting in EDSR, our teacher models contain 32 residual

blocks, 256 filters and residual scaling is set to 0.1. Our

student super-resolution models contain 32 residual blocks,

128 filters and same residual scaling with teacher model.

Details are shown in Table 3. Moreover, the generator used

here is same with VDSR.

Hyper-parameters that used in training teacher super-

resolution models are totally the same as those in EDSR.

The teacher super-resolution models are trained on DIV2K

dataset [35]. DIV2K dataset [35] consists of 800 2K res-

olution training images and 100 2K resolution validation

images and is widely used for training and testing in super-

resolution tasks. To evaluate our proposed method, we cal-

culate PSNR and SSIM on Set5 [2], Set14 [41], B100 [30]

and Urban100 [15].

Based on the open source code of EDSR [23], our

method is implemented with Pytorch on an NVIDIA V100

GPU. During training student network and generator net-

work iteratively, we process 16 48×48 images per step. For

the training process of student network, we set the learning

rate as 10−4 and optimize the parameter with ADAM opti-

mizer [19] by setting β1 = 0.9, β2 = 0.999 and ǫ1 = 0.9.

For training the generator network, we set the learning rate

as 10−6 and also use ADAM as optimizer. We update the

student network 50 times and then optimize the generator

network. During the whole training process, we optimize

for 300 epochs and in every epoch, we update generator
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Table 4. Quantitative results (PSNR/SSIM) in different experimental settings on EDSR.

Dataset Scale

EDSR

Teacher Student Bicubic Noise Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set5

×2 38.19 0.9609 38.15 0.9610 33.69 0.9308 34.65 0.9425 37.67 0.9593

×3 34.68 0.9294 34.54 0.9283 30.41 0.8692 30.22 0.8448 33.57 0.9203

×4 32.48 0.8988 32.32 0.8968 28.43 0.8114 28.39 0.8021 31.78 0.8897

Set14

×2 33.95 0.9202 33.78 0.9197 30.34 0.8701 31.35 0.8960 33.16 0.9138

×3 30.53 0.8465 30.45 0.8447 27.64 0.7757 27.86 0.7776 29.77 0.8332

×4 28.82 0.7879 28.72 0.7852 26.10 0.7044 26.27 0.7170 28.33 0.7758

B100

×2 32.35 0.9109 32.26 0.9008 29.56 0.8437 30.32 0.8753 31.76 0.8942

×3 29.26 0.8096 29.18 0.8074 27.21 0.7391 27.09 0.7271 28.66 0.7945

×4 27.72 0.7420 27.65 0.7391 25.96 0.6680 25.88 0.6772 27.38 0.7292

Urban100

×2 32.97 0.9359 32.50 0.9321 26.88 0.8407 28.56 0.8819 30.58 0.9119

×3 28.81 0.8659 28.50 0.8596 24.46 0.7351 24.64 0.7273 26.74 0.8195

×4 26.65 0.8036 26.38 0.7958 23.14 0.6577 23.40 0.6670 25.40 0.7609

HR

PSNR/SSIM

Bicubic

23.59/0.6427

Noise

23.67/0.6549

Ours

25.08/0.7427

Teacher

25.74/0.7748

Student

25.21/0.7533

HR

PSNR/SSIM

Bicubic

20.97/0.6582

Ours

22.66/0.7845

Teacher

22.65/0.7989

Student

22.41/0.7815

Noise

20.59/0.6579

Figure 5. ×4 super resolution results of img080 and img064 from Urban100 on EDSR.

120 times. Same with VDSR, we set wR to 1.0. In addition,

the student network is divided in 2 parts and trained for 2

phases. In the first phase, we train 80 epochs.

The performance of our method and the compared base-

lines are provided in Table 4. As is shown in Table 4, our

proposed method performs well in EDSR. For instance, for

×2 super resolution, our method gets about 3.05dB increase

than distilling with random noise images and is only 0.48dB

lower than training with datasets.

5. Conclusion

This paper studies the data-free model compression for

single image super-resolution networks, which are widely

used in portable devices. We first analyze the difference

between the mechanisms of image classification and super-

resolution. Then, we propose to utilize the reconstruction

loss and the adversarial loss to train the generator for ap-

proximating the original training data. Moreover, a pro-

gressive distillation strategy is imposed on the student net-

work for better inheriting useful information from teacher

network. Extensive experiments demonstrate that our pro-

posed method can produce student networks with similar

results and fewer computational costs without training data.

In addition, the proposed method can be easily transferred

to other low-level computer vision tasks such as image de-

noising and inpanting, which will be investigated in future

works.
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