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Abstract

How to effectively represent camera pose is an essential

problem in 3D computer vision, especially in tasks such as

camera pose regression and novel view synthesis. Tradi-

tionally, 3D position of the camera is represented by Carte-

sian coordinate and the orientation is represented by Euler

angle or quaternions. These representations are manually

designed, which may not be the most effective representa-

tion for downstream tasks. In this work, we propose an

approach to learn neural representations of camera poses

and 3D scenes, coupled with neural representations of lo-

cal camera movements. Specifically, the camera pose and

3D scene are represented as vectors and the local camera

movement is represented as a matrix operating on the vector

of the camera pose. We demonstrate that the camera move-

ment can further be parametrized by a matrix Lie algebra

that underlies a rotation system in the neural space. The

vector representations are then concatenated and generate

the posed 2D image through a decoder network. The model

is learned from only posed 2D images and corresponding

camera poses, without access to depths or shapes. We con-

duct extensive experiments on synthetic and real datasets.

The results show that compared with other camera pose rep-

resentations, our learned representation is more robust to

noise in novel view synthesis and more effective in camera

pose regression.

1. Introduction

With the advance of deep neural network (DNN), there

has been a series of successful works that employ DNN in

camera pose estimation [17, 16, 2, 26, 1, 20] or object pose

estimation [5]. In contrast, novel view synthesis is in the

opposite direction that maps the camera pose and 3D scene

representation back to the posed 2D image under certain

view [6, 30]. A fundamental problem in both lines of work

is to find effective representations of the camera pose [39].

Existing methods include representing the agent’s position

in 3D Cartesian coordinate, and the 3D orientation can be

represented by Euler angle, axis-angle, SO(3) rotation ma-

trices, quaternions or log quaternions. These representa-

tions are mainly defined in manually designed coordinates

where each dimension has highly abstract semantics, which

could be suboptimal when involved in the optimization with

deep neural networks. It is desirable to have learning-based

representations for camera poses.

Recently, [8] proposes a representational model of

grid cells in the entorhinal cortex of mammalian brains.

Grid cells have been found participating in mental self-

navigation and they fire at strikingly regular hexagon grids

of positions when the agent moves within an open field. The

representational model in [8] consists of a vector represen-

tation of agent’s self-position, coupled with a matrix repre-

sentation of agent’s self-motion. When the agent undergoes

a certain self-motion in the 2D space, the vector of self-

position is rotated by the matrix of self-motion on a 2D sub-

manifold in the mental space. Such a model achieves self-

navigation and learns hexagon grid patterns of grid cells,

which has the promise to be biologically plausible.

Inspired by [8, 9], we propose an approach towards

learning neural representation of camera pose, coupled with

representation of local camera movement. Specifically,

given 2D posed images of a 3D scene and their correspond-

ing camera poses, we assume a shared vector representation

for the underlying 3D scene and a distinct vector representa-

tion for the camera pose of each 2D image. When the cam-

era has a local displacement, the vector of 3D scene remains

unchanged while the vector of camera pose is rotated by the

matrix representation of camera movement (Figure 1). We

further parametrize the matrix representation by matrix Lie

group and the corresponding matrix Lie algebra. The vector

representations of camera poses and matrix presentations of

camera movements can be shared across multiple scenes,

so that they can be learned from multiple scenes to boost

performance. The vectors of 3D scene and camera pose are

concatenated together to generate the 2D image through a

decoder network (Figure 2). The model is learned with only

posed 2D images and camera poses, without extra knowl-
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Figure 1: Illustration of our proposed pose representation. Take

axis x as an example. The agent’s position on axis x is mapped to

a high dimensional vector and the agent’s movement along axis x

is modeled as a rotation of the vector.

edge such as depths or shapes. We perform various experi-

ments on synthetic and real datasets in the context of novel

view synthesis and camera pose regression.

The contributions of our work include:

1. We propose a method for learning neural camera pose

representation coupled with neural camera movement

representation.

2. We associate this representational model with the

agent’s visual input through a generative model.

3. We demonstrate that the learned neural representation

is effective as the target representation in camera pose

regression.

2. Related work

2.1. Representing camera orientation and position

The simplest way to represent orientation is by Euler

angle. However, as [17, 16] point out, Euler angle wraps

around at 2π and is not injective to 3D rotation, and thus

can be difficult to learn. [1] uses SO(3) rotation matrices to

represent the relative orientation rotation between a pair of

images. SO(3) rotation matrices are an over-parameterized

representation of rotation which has the property of or-

thonormality. However, it is in general difficult to enforce

the orthonormality constraint when learning a SO(3) repre-

sentation through back-propagation. [34, 22] use axis-angle

representation, which represents 3D orientation by the di-

rection of axis of rotation as well as the magnitude of the ro-

tation. Similar to Eluer angles, this representation also has

the problem of repetition around the 2π radians. PoseNet

and its variants [17, 16] propose to use quaternions. Quar-

ernions, or more specfically, quaternions with unit length,

are a 4-D continuous and smooth representation of rota-

tion. MapNet [2] further proposes to use log quaternions to

avoid over-parametrization. These quaternion-based meth-

ods achieve state-of-the-art results in the area of absolute

camera pose regression. [39] argues that these represen-

tations are not continuous and proposes another 5D or 6D

representation for orientation. All these representations are

manually designed and pre-defined. In contrast, [9] pro-

poses a neural representation of position and motion to ex-

plain the emergence of grid cell pattern. However, [9] only

considers motion in 2D space and does not take visual in-

put into consideration. Our method can be seen as a gen-

eralization of [9]. Our method models both position and

orientation and their corresponding changes in 3D environ-

ments, and we associate position representations with visual

inputs. The concept of position embedding is also used in

other areas such as natural language processing. For exam-

ple, transformer-based models such as BERT [4] or GPT

[25] have a high dimensional embedding of the position of

word in the sentence. These embeddings [35, 28, 10, 36]

can be either learnable or predefined. We introduce learn-

able representations for camera pose in 3D vision. Our ro-

tation loss enforces translation invariance, which serves as

a regularization on the learned representations.

2.2. Novel view synthesis

Learning neural 3D scene representation is a fundamen-

tal problem in 3D vision, and a compelling way to evaluate

the learned representations is by novel view synthesis. One

line of work [30, 23, 33] incorporates prior knowledge of

rendering such as rotation and projection to enforce the con-

sistency between different views, such as NeRF [23]. An-

other theme [31, 37, 6] learns neural representations purely

from the perception of the agent, without extra 3D prior

knowledge. Our model belongs to the latter. Different from

previous methods, we also learn neural representations of

the camera pose and camera movement, and the represen-

tations of 3D scene and camera pose are disentangled in an

unsupervised manner. [31, 37] infer the scene representa-

tion from a single image or a pair of images, while [6] as-

sumes that the representation can be obtained from a small

batch of images. Compared to these methods, our model is

able to utilize posed images of various scenes to update the

shared camera pose representations.

2.3. Interpretable representation

In generative modeling, learning interpretable latent rep-

resentation is a long-standing target. Specifically, the goal

is to learn latent vectors such that each dimension or sub-

vector is aligned with an independent factor or concept.

This can be done either with supervision [19, 24] or with-

out supervision [11, 18, 15]. Besides vector representation,

[21, 37, 14, 7] learns matrix representation of image trans-

formation that operates on the latent vector representation.

Our model is a combination of both vector and matrix

representations. On the one hand, we disentangle the vector

representations of each individual scene and camera pose.

On the other hand, we model the movement of the cam-

era pose by matrix representation, which is in the form
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of matrix Lie group and matrix Lie algebra. In terms of

parametrization of the matrix representation, [37] uses pre-

defined and fixed rotation matrix, [21] learns a fixed ma-

trix for each type of variation, and [14] parametrizes 2D

ego-motion operated on 2D images. Different from these

methods, we parametrize the matrix representation of cam-

era movement as a nonlinear function of the movement in

3D that can take continuous values and operate on the vec-

tor representations of 3D scenes.

2.4. Deep pose regression models

Deep pose regression models [27] can be categorized

into absolute camera pose regression (APR) [17, 16, 2]

which directly predicts the camera pose given an input im-

age, and relative camera pose estimation (RPR) [26, 1, 20]

that predicts the pose of a test image relative to one or more

training images. In this work, we adopt the APR setting

while the method can also be easily adapted to the RPR set-

ting. Note that our focus is to compare the effectiveness of

different camera pose representations, which is orthogonal

to the other methods that specifically target at improving the

performance of pose regression.

3. Representational model

Suppose an agent move in a 3D environment with head

rotations. There are at most 6 degrees of freedom (DOF),

i.e., the position of the agent (x, y, z) and its head orien-

tation (α, β, γ). We denote them as the pose of the agent

p = (x, y, z, α, β, γ). Following the idea of [9], we en-

code each DOF by a d-dimensional sub-vector vl(l), l ∈
{x, y, z, α, β, γ}. From the embedding point of view, es-

sentially we embed the 1D domain in R
1 as a 1D manifold

in a higher dimensional space Rd. We limit each sub-vector

to have unit length, i.e., we further assume the 1D manifold

to be a circle. For notation simplicity, we concatenate those

sub-vectors to a pose vector v(p). When the camera makes

a movement δp = (δx, δy, δz, δα, δβ, δγ), the camera pose

changes from v(p) to v(p+ δp). See Figure 1 for an illus-

tration of our proposed framework.

3.1. Modeling movement as vector rotation

We start from considering an infinitesimal camera move-

ment δp. For each DOF l ∈ {x, y, z, α, β, γ}, we propose

the following model:

vl(l + δl) = Ml(δl)vl(l) + o(δl), (1)

where Ml(δl) is a d×d matrix depending on δl. Given that

δl is infinitesimal, the model can be further parametrized as

vl(l + δl) = (I +Blδl)vl(l) + o(δl), (2)

where I is the identity matrix and Bl is a d × d ma-

trix that needs to be learned. We assume Bl to be skew-

symmetric i,e. Bl = −BT
l . This assumption guarantees

Figure 2: Illustration of our framework. (a) Pose vector for a

given position x is obtained by rotating its nearby grid vector. (b)

Pose vector is fed-in a decoder together with a scene representa-

tion vector to predict image under certain view. (c) The rotation

consistency of our pose representation system is enforced through

pose rotation loss. (d) The decoding ability of our pose represen-

tation system is enforced through image reconstruction loss.

that (I +Blδl)(I +Blδl)
T = I + o(δl2), i.e., (I +Blδl)

is approximately an orthogonal matrix. From the geomet-

ric perspective, it maps the movement along l axis in 1D

space to rotation of the vector in the high-dimensional la-

tent space. In practice, we only need to parametrize the

upper triangle of Bl as trainable parameters and the lower

triangle of Bl is taken to be the negative of the upper trian-

gle. We further assume Bl to be block-diagonal so that the

total number of parameters can be greatly reduced. If there

are movements on multiple DOFs, we only need to rotate

each sub-vector of DOF independently.

As pointed out by [9], equations 1 and 2 can be jus-

tified as a minimally simple recurrent model. To model

the movement in the latent space, the most general form

is vl(l+ δl) = F (vl(l), δl), i.e., the pose vector for the new

pose is a function of the one for the old pose and the move-

ment. Given that δl is infinitesimal, we can apply the first-

order Taylor expansion: vl(l + δl) = vl(l) + f(vl(l))δl +
o(δl), where we use f(vl(l)) to denote the first derivative

of F (vl(l), δl), i.e., f(vl(l)) =
∂
∂δl

F (vl(l), δl)|δl=0. When

the movement δl = 0, we should have that F (vl(l), 0) =
vl(l). Then a minimally simple model is to assume f(vl(l))
as a linear transformation , i.e. f(vl(l)) = Blvl(l), and

vl(l+ δl) = vl(l) +Blvl(l)δl+ o(δl). As we will discuss

in 3.3, for finite movement ∆p, we recurrently apply the

model of infinitesimal δp, so that the matrix representation

becomes a matrix Lie group.

3.2. Polar system for position change in 2D

If the movement of the agent is constrained in a 2D en-

vironment, we follow [9] to use a polar coordinate system

to model the change of position, which corresponds to the

egocentric perspective and could be potentially more bio-

logical plausible. Specifically, let x = (x, y) be the po-
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sition of the agent in the 2D space, instead of using in-

dividual vector vx and vy to represent the position, we

represent position in a single vector vx(x) and the move-

ment is captured by direction θ and distance δr. We have

δx = (δx, δy) = (δr cos θ, δr sin θ). The representational

model under this polar coordinate system is:

vx(x+ δx) = (I +B(θ)δr)vx(x) + o(δr). (3)

The B(θ) is a function of θ and is skew-symmetric. B(θ)
models the change of position along the direction θ. If the

agent changes the direction of movement from θ to θ + δθ,

then we assume

B(θ + δθ) = (I +Cδθ)B(θ) + o(δθ), (4)

where C is another skew-symmetric matrix to learn. The

geometric interpretation is that if the agent changes direc-

tion, B(θ) is rotated by another matrix C.

For camera movement in 3D environment, such coupled

representation in polar coordinate will end up with too many

matrix representations to learn. Therefore, we restrict our-

selves in using it only in 2D space, and use the vector-matrix

representations that are disentangled for each DOF as pro-

posed in 3.1 for general 3D movements.

3.3. Matrix Lie group for finite movement

So far we have discussed the formulation for infinitesi-

mal movements above. In this subsection we generalize to

finite movements. Suppose the agent has a finite movement

∆l along the axis l ∈ {x, y, z, α, β, γ}. We can divide this

movement into N steps, so that as N → ∞, ∆l
N

→ 0, and

vl(l +∆l) = (I +Bl(
∆l

N
) + o(

1

N
))Nvl(l)

→ exp(Bl∆l)vl(l). (5)

This underlies the relationship between matrix Lie algebra

and matrix Lie group. Specifically, the set of Ml(∆l) =
exp(Bl∆l) for ∆l ∈ R forms a matrix Lie group. The

tangent space of M(∆l) at identity is the corresponding

matrix Lie algebra. Bl is the basis of this tangent space,

and is also called as the generator matrix.

For a finite but small ∆l, exp(Bl∆l) can be approxi-

mated by a second-order Taylor expansion

exp(Bl∆l) = I +Bl∆l +
1

2
B2

l ∆l2 + o(∆l2). (6)

For a large finite change in each axis, we can divide it into

a series of small finite changes, expand each change using

second-order Taylor expansion and multiply them together.

3.4. Theoretical understanding of our model

A deep theoretical result from mathematics, namely the

Peter-Weyl theorem [32], inspires our work. It says that for

a compact Lie group, if we can find an irreducible unitary

representation, i.e., each element x of the group is repre-

sented by a unitary (or orthogonal) matrix M(x), then the

matrix elements (Mij(x)) form a set of orthogonal basis

functions for the general functions of x. This is a deep gen-

eralization of Fourier analysis. In our case, the learned vec-

tor representation v(x) = M(x)v(0) are linear composi-

tions of the above basis functions, and the elements (vi(x))
serve as a more compact set of basis functions for repre-

senting general functions of x. Our method can be used

to represent the pose of the camera and objects in general.

The continuous changes of the pose in the physical space

generally form a Lie group. Our learned vector and matrix

system forms a representation of the pose and its change in

the neural space.

3.5. Implementation of pose representation

Suppose we want to learn the representation of axis l,

whose value ranges in [a, b]. For orientation, the angles is

of range [0°, 360°), while for position, we can predefine

the largest range the agent can move within. We divide this

range into multiple grids and we learn an individual vector

at each grid point. Given an arbitrary position l ∈ [a, b], we

first find its nearest grid point and the corresponding vector

representation, and then we rotate this vector to the target

position by the matrix representation depending on the dis-

tance between this nearest grid position and the target posi-

tion. See Figure 2. Since we can set the length of grid to

be relatively small, the distance between the grid and tar-

get positions is also small, so that we can use second-order

Taylor expansion in Equation 6 to approximate the matrix

representation.

3.6. Decoding to posed 2D images

To associate the camera pose representation with visual

input, more specifically the posed 2D images, we propose

a decoder or emission model. For each 3D scene, suppose

we are given multiple posed 2D images I and the corre-

sponding camera poses p. Then we assume a shared vector

representation u of the 3D scene, and obtain the vector rep-

resentation of the camera pose v(p) as described in 3.5. We

learn a decoder Gφ that maps u and v(p) to the image space

to reconstruct I

Î = Gφ(u,v(p)), (7)

where φ denotes parameters in the decoder network.

4. Learning and inference

4.1. Learning through view synthesis

For a general 3D environment, the unknown parameters

of the proposed model include (1) v(p) for any p on grid

positions, (2) Bl for any l ∈ {x, y, z, α, β, γ}, and (3) pa-

rameters φ in Gφ. To learn these parameters, we define
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a loss function L = λ1Lrec + λ2

∑
l∈{x,y,z,α,β,γ} Lrot,l,

where

Lrec = EI ‖I−Gφ(u,v(p))‖
2
,

Lrot,l = El,∆l ‖vl(l +∆l)− exp(Bl(∆l))vl(l)‖
2
. (8)

Lrec is the reconstruction loss for view synthesis, which en-

forces the decoding of the pose and scene representations to

reconstruct the observation. The expectation is estimated by

Monte Carlo samples. Lrot stands for rotation loss, which

serves to constrain vl so that the learned pose representa-

tions of different poses can be transformed to each other

based on our representational model (Equation 5). The ex-

pectation term in Lrot can be approximated by randomly

sampled pairs of poses p and p+∆p that are relatively close

to each other, which means that we have infinite amount of

data for this loss term.

If the movement of camera pose is in a 2D space and

we employ the polar coordinate system, then part (2) of the

unknown parameters becomes Bl for any l ∈ {α, β, γ},

B(θ) and C. The loss functioin is defined as L = λ1Lrec+
λ2

∑
l∈{α,β,γ} Lrot,l+λ3Lrot,x+λ4Lrot,θ, where Lrec and

Lrot,l follow equation 8 and

Lrot,x = Ex,∆x ‖vx(x+∆x)− exp(B(θ)∆r)vx(x)‖
2
,

Lrot,θ = Ex ‖B(θ +∆θ)− exp(C∆θ))B(θ)‖
2
. (9)

For training, we minimize L by iteratively updating the

decoder Gφ (as well as our scene representation u) and our

pose representation system vl, Ml for l ∈ {x, y, z, α, β, γ}.

In practice, the decoder is parameterized by a multi-layer

deconvolutional neural network. Besides the latent vector

on top of the decoder, we also learn a scene-dependent vec-

tor at each following layers using AdaIN [12]. We normal-

ize the scene vector at the top layer of the decoder to have

unit norm so that it has the same magnitude as the pose rep-

resentation. We find this helps optimization. More details

can be found in Supplementary.

4.2. Inference by pose regression

With the learned pose representation, we can then use it

as the target output for camera pose regression. Specifically,

for each DOF, we train a separate inference network Eξl that

maps the observed posed 2D image I to the pose represen-

tation vl(l) . The loss function is defined as the L2 distance

between the inferred and learned pose presentations

Ll = EI ‖vl(l)− Eξl(I)‖
2
. (10)

In practice, Eξl is parameterized by a convolutional neural

network where ξ denotes the parameters and we introduce

some scene-dependent parameters using AdaIN. For differ-

ent DOFs, the inference networks share common lower lay-

ers but with different top fully-connected layers.

For testing, given an unseen posed image I, we can

get the inferred pose representation v̂l from our inference

model, and decode the predicted pose by:

l̂ = argmin
l

‖vl(l)− v̂l‖
2
, l ∈ (x, y, z, α, β, γ) (11)

5. Experiments

In this section, we demonstrate the efficacy of our

learned pose representations in both view synthesis and

pose regression tasks. For view synthesis, we mainly com-

pare with the Generative Query Network(GQN) [6]. For

pose regression, we compare our learned neural representa-

tions of camera pose with other commonly used pose repre-

sentations, including the Euler angle, the sinusoidal repre-

sentation used in GQN, and the quaternions (as well as log

quaternions) representations used in the PoseNet [17, 16]

and MapNet [2], by evaluating the pose estimation accu-

racy. More details of implementation can be found in Sup-

plementary. Our code and pretrained models can be found

at https://github.com/AlvinZhuyx/camera_

pose_representation.

5.1. Datasets

GQN rooms. GQN [6] introduces a synthetic dataset

with 2 million synthetic scenes, where each scene contains

various objects, textures, and walls. The agent can navigate

in a 2D space and rotate the head horizontally in the scenes.

Each scene contains 10 rendered 64× 64 RGB images. We

use the version of the dataset where the camera moves freely

and the objects do not rotate around their axes. We sam-

ple 200, 000 scenes from the dataset. For each scene, we

sample 9 images for training and use the left one image for

testing. Since this dataset contains a large number of sim-

ple scenes with a small number of images for each scene,

instead of learning an individual scene representation vec-

tor for each scene, we learn an encoder to encode the scene

representation online similar to [6]. Since the agent has 2

DOFs for position and 1 DOF for orientation, our pose vec-

tor contains one position sub-vector in the polar coordinate

system and one orientation sub-vector. Each sub-vector has

96 dimensions. We assume that B is block-diagonal with

six blocks, and each block is 16 × 16.

ShapeNet v2. We use the images generated by [30] from

the car category of ShapeNet v2 dataset [3]. This dataset

contains 2,151 object models. For each scene, the instance

locates at the center of a sphere. The virtual agent can move

on the surface of this sphere, with its camera pointing to the

center. Therefore, the agent has 2 DOFs, and we use 2 ori-

entation angles to denote its position on the sphere. Each

instance contains 500 different views of 128×128 rendered

RGB images, where we randomly sample 100 images for

training and leave the others for testing. The pose repre-

sentation contains two sub-vectors of two orientation an-
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gles. Each sub-vector has a dimension of 96, and B has six

16×16 blocks. We learn an individual scene representation

vector u for each instance.

Gibson Environment. The Gibson Environment [38]

provides tools for rendering images corresponding to dif-

ferent views in a room, which we use to generate a syn-

thetic dataset. We refer to this dataset as Gibson rooms.

Specifically, we select 20 areas of size 2m × 2m from dif-

ferent rooms. For each area, we randomly render about

28k 128 × 128 RGB images of different views. We fix the

camera height and constrain the camera to rotate only hori-

zontally. Compared to GQN rooms and ShapeNet car, this

synthetic dataset contains more realistic and complicated

indoor scenes, which could be more challenging. More-

over, it includes fewer scenes while for each scene, images

from abundant views are provided. Therefore, incorporat-

ing view-based information becomes very important. The

agent has 2 DOFs for position and 1 DOF for orientation,

which corresponds to a position sub-vector in the polar co-

ordinate system and one orientation sub-vector. The dimen-

sions of the sub-vectors and B are the same as the ones for

GQN rooms dataset.

7 Scenes Dataset. Microsoft 7 Scenes [29] is a widely

used dataset for camera pose estimation. It contains RGB-

D images for seven different indoor scenes. Each scene has

several trajectories for training and testing. In our experi-

ment, we follow the training and testing split in [29], and we

only use RGB images without depth information. We trans-

late and align the position coordinates of scenes and ensure

that all the trajectories locate in a 4m × 1.5m × 3m cuboid.

The agent has 6 DOFs, so the pose representation vector

contains 6 sub-vectors. We assume that each sub-vector has

a dimension of 32, and each B has four 8 × 8 blocks. We

mainly use this dataset for camera pose regression. We re-

size the images to 128 × 128 when training the decoder and

pose representation system. We use shared pose represen-

tations for all the seven scenes and distinct scene represen-

tation for each of them. When performing pose regression,

following [16, 2], we train an individual inference model for

each scene and resize the input images so that the shortest

side is of length 256.

5.2. Novel view synthesis

The first question is whether our learned pose represen-

tation is meaningful. We answer this by testing our learned

representations on novel view synthesis task. The experi-

mental results demonstrate that our learned representations

can generate a novel view of a scene of high quality. Fig-

ure 3 shows the qualitative results, and Figure 4 shows the

quantitative results in terms of Peak Signal-to-Noise Ratio

(PSNR). We compare the results with GQN. For GQN, we

use the implementation by [13] and the same training and

testing splits as ours. We use 8 generation layers and set the

(a) Ground Truth (b) GQN (c) Ours

Figure 3: Qualitative results for novel view synthesis. Top: GQN

rooms. Middle: ShapeNet car. Bottom: Gibson rooms.

shared core option to be False. We add extra convolution

and de-convolution layers when dealing with images of size

128 × 128. The total number of parameters for this GQN

implementation is 114M. In contrast, our model only has

less than 9M parameters.

From Figure 3 and Figure 4 (noise magnitude of 0.0 cor-

responds to novel view synthesis test result), we see that for

GQN rooms dataset, our model gets a bit worse but com-

parable results with the GQN model. For ShapeNet car

dataset, which contains complex instances, our model gen-

erates more consistent and clearer results compared with

GQN. For Gibson rooms dataset, which is more compli-

cated, GQN fails to capture the relationship. The recon-

struction only captures some specific views and does not

generalize to other views. On the other hand, our learned

model is able to generate a query view corresponding to our

pose representation. This is probably because that the 3D

scene representations in our method are learned by all the

2D posed images of the scene.

5.3. Robustness to pose noise

Next, we try to answer why we need that representation

and what is the advantage of such neural representation over

directly using 6 DOFs coordinate representation in terms of

novel view synthesis. One critical supporting evidence is

that our learned neural pose representation is more robust

to noise. Specifically, Figure 4 shows the changes of PSNR

for our model versus the GQN model when some Gaussian
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(a) GQN rooms (b) ShapeNet car (c) Gibson rooms

Figure 4: Quantitative results for novel view synthesis given different noise magnitudes. In each figure, we plot the PSNR over different

magnitudes of noise introduced to the position vector. For a given noise magnitude α, if the i-th element in the position vector has a

standard deviation βi, then we add a Gaussian Noise N(0, (αβi)
2) to the corresponding element. Noise magnitude 0.0 corresponds to the

novel view synthesis test result. We compare with GQN on three datasets.

Representations
ShapeNet car GQN rooms Gibson rooms

orientation x y orientation x y orientation

(x, y, α) 7.75° 0.069 0.071 12.00° 0.043m 0.041m 7.03°

(x, y, axis-angle) 11.29° - - - - - -

(x, y, sin(α), cos(α))) 7.29° 0.108 0.104 16.46° 0.033m 0.034m 1.19°

(x, y, q) 4.28° 0.050 0.048 5.34° 0.043m 0.042m 1.21°

(x, y, log q) 5.35° 0.051 0.051 7.44° 0.028m 0.027m 1.17°

ours 2.85° 0.053 0.053 4.07° 0.021m 0.020m 0.87°

Table 1: Camera pose estimation errors on different datasets. We compare with several camera pose representations. (x, y, α) denotes

the representation that uses x, y, z coordinate to represent position and Euler angle to represent orientation. (x, y, axis-angle) denotes

using axis-angle representation for rotation. Note that for GQN rooms and Gibson rooms datasets, the agent only has one DOF of rotation.

Therefore, the axis-angle representation degrades to one Euler angle representation, and its results should be the same as the Euler angle.

(x, y, sin(α), cos(α)) denotes using sinusoidal functions to represent orientation. (x, y, q) denotes the unit quaternions representation

used in [16] while (x, y, log q) stands for the logarithm quaternions representation proposed in [2]. Our method uses learned pose vectors

for both camera position and orientation. We report the average prediction error for each dataset. For ShapeNet car dataset, the camera

is located on a sphere, so we only need to predict the orientation angle. For GQN rooms and Gibson rooms datasets, we predict both the

camera position and orientation. For GQN rooms, the range of each scene is from -1.0 to 1.0. For Gibson rooms, we render each scene to

an area of 2m × 2m.

noise with various magnitudes is added to the pose repre-

sentations. We observe that the performance of the GQN

model degrades quickly as the magnitude of added noise

increases. This is not surprising since GQN directly uses

coordinate representation for position and orientation and

thus is vulnerable to noise interference. On the other hand,

our learned representation embeds the camera pose to high

dimensional space and is further regulated by the rotation

loss, and thus is more robust to noise.

5.4. Inference results

We further demonstrate that our learned representation is

efficient to serve as the target output of pose regression. In

the camera pose regression task, the camera position is usu-

ally represented using 3D coordinate (x, y, z) and the cam-

era orientation can be represented by various methods. The

most straightforward one is to use the Euler angle to rep-

resent the orientation. Another representation is axis-angle

representation. In [6], the authors use (sin(α), cos(α)) to

represent each orientation angle. Besides, unit quaternions

and logarithm of the unit quaternions are another two popu-

lar representations used in pose regression [17, 16, 2]. Com-

paring with those methods, we used learned neural repre-

sentations for both camera position and orientation. We

conduct the pose regression experiments on all four datasets

we mentioned above. For our representation, Euler Angle

representation and (sin(α), cos(α)) representation we use

mean square error loss for regression. On 7 Scenes dataset,

we also use L1 norm loss for our representation. For quater-

nions and log quaternions representations, as suggested by

[2], we use L1 norm loss. For axis-angle representation,

we find that for ShapeNet car dataset, using L1 norm loss

leads to better results. For Gibson rooms and GQN rooms

datasets, since the agent can only rotate its head horizon-
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Scene PoseNet17[16] PoseNet + log q[2] PoseNet + log q (*) ours

Chess 0.13m, 4.48° 0.11m, 4.29° 0.17m 4.96° 0.12m 4.83°

Fire 0.27m, 11.30° 0.27m, 12.13° 0.36m 11.22° 0.27m 8.91°

Heads 0.17m, 13.00° 0.19m, 12.15° 0.20m 13.35° 0.16m 12.84°

Office 0.19m, 5.55° 0.19m, 6.35° 0.23m 7.05° 0.19m 6.64°

Pumpkin 0.26m, 4.75° 0.22m, 5.05° 0.26m 5.87° 0.22m 5.45°

Red Kitchen 0.23m, 5.35° 0.25m, 5.27° 0.29m 6.10° 0.24m 6.10°

Stairs 0.35m, 12.40° 0.30m,11.29° 0.36m 10.18° 0.29m 10.70°

Average 0.23m, 8.12° 0.22m 8.07° 0.27m 8.39° 0.21m 7.92°

Table 2: Camera pose estimation errors on 7scenes dataset. We compare our results with PoseNet using quaternions (PoseNet17) and

log quaternions (PoseNet + log q). The column PoseNet + log q(*) are the results we get by running the code provided by [2]. In the last

column, we show the results using our learned pose representation. Following the convention, we report the median prediction errors here.

tally, the axis-angle representation degrades to a single Eu-

ler angle. For the two quaternions-related baselines, we em-

ploy the automatic weight tuning method proposed in [16]

to make a fair comparison. Note that the main focus of this

work is to compare different pose representations, and thus

we do not include other improvement techniques (e.g., in-

cluding unlabeled data or relative pose loss between image

pairs), as we consider them as orthogonal directions to im-

proving the pose representations. More details can be found

in Supplementary.

We first show the comparison results on GQN rooms,

ShapeNet car, and Gibson rooms datasets in Table 1. For

a fair comparison, we keep the same network structure for

all the representations on each dataset and only change the

final output layer. Since the dimension of our learned rep-

resentation is higher than all the baseline representations,

for a fair comparison, we add another fully-connected layer

to these baseline inference networks so that the inference

models have roughly the same number of parameters across

different pose representations. According to Table 1, our

representation consistently outperforms all the other repre-

sentations, especially for orientation regression. For most

configurations, our representation yields the best results in

both orientation and position prediction. On GQN dataset,

the quaternions and log quaternions representation achieve

slightly better results in position prediction. However, their

orientation prediction results are much worse than ours. A

possible explanation is that we embed both the camera posi-

tion and orientation as neural representations, and thus they

are more consistent with each other. Besides, representing

the rotation angles on a hyper-sphere in a high dimensional

space may also make it easier for the model to regress.

We further compare our learned pose representations

with the popular quaternions and log quaternions represen-

tations on 7 Scenes dataset using PoseNet. Following [2],

we use a pre-trained ResNet34 as our feature extractor and

6 parallel fully-connected (FC) layers to predict the 6 pose

sub-vectors. We employ color jittering as data augmenta-

tion and remove the dropout in the FC layers. The results

are shown in Table 2. We compare our results with [16, 2].

We also run the code provided by [2] to re-train their model

and report the results. The difference between the reported

values and the reproduced results is probably due to the ran-

domness and different versions of software 1. Following the

convention on this dataset, we report the median errors of

location and orientation predictions. The result shows that,

on average, our model outperforms all the baselines.

6. Conclusion and Future Work

We propose a framework for learning neural vector rep-

resentations for both camera poses and 3D scenes, coupled

with neural matrix representation for camera movements.

The model is learned through novel view synthesis and can

be used for camera pose regression. Our learned represen-

tation proves to be more robust against pose noise in the

novel view synthesis task and works well as the estimation

target for camera pose regression. We hope that our work

can motivate further interest and study on learning neural

representations for camera poses and joint representations

for camera poses and 3D scenes. An interesting future di-

rection is how to combine our method with the recent work

of NeRF [23], which uses sinusoidal functions of very high

frequencies. Our model can be adapted to this new genera-

tive model structure and may be able to learn more flexible

camera pose representation.
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