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Abstract

We propose HOI Transformer to tackle human object in-

teraction (HOI) detection in an end-to-end manner. Cur-

rent approaches either decouple HOI task into separated

stages of object detection and interaction classification

or introduce surrogate interaction problem. In contrast,

our method, named HOI Transformer, streamlines the HOI

pipeline by eliminating the need for many hand-designed

components. HOI Transformer reasons about the rela-

tions of objects and humans from global image context and

directly predicts HOI instances in parallel. A quintuple

matching loss is introduced to force HOI predictions in a

unified way. Our method is conceptually much simpler

and demonstrates improved accuracy. Without bells and

whistles, HOI Transformer achieves 26.61% AP on HICO-

DET and 52.9% AProle on V-COCO, surpassing previous

methods with the advantage of being much simpler. We

hope our approach will serve as a simple and effective al-

ternative for HOI tasks. Code is available at https:

//github.com/bbepoch/HoiTransformer.

1. Introduction

Human-Object Interaction (HOI) detection plays an im-

portant role in the high level human-centric scene under-

standing, and has attracted considerable research interest re-

cently. The HOI research can also contribute to other tasks,

such as action analysis, weakly-supervised object detection,

and visual question answering, etc.

The goal of HOI detection aims at localizing human and

object, as well as recognizing the interaction between them.

Previous studies [7, 6, 9, 22, 19, 3] present promising results

on HOI detection by decouple this task into object detec-

tion and interaction classification (Fig. 1(a)). More specifi-

cally, human and object detection results is first obtained by

pre-trained object detector, then interaction classification is
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Figure 1: Comparison of recent approaches on HOI detec-

tion. (a) two-stage methods, typically use pre-trained detec-

tors to generate human, object proposal and enumerate all

(human, object) pairs, followed by a multi-stream architec-

ture to classify interactions. (b) one-stage methods, detect

interaction point/box and object proposals simultaneously,

followed by complex matching process to assign interac-

tions to object pairs. (c) our end-to-end method, input an

image and predict HOI instances directly.

conducted on the pair-wisely combined human-object pro-

posals. The limitations of these methods are mainly caused

by the separated two stages. The independent optimization

on two sub-problems may lead to sub-optimal solution. The

generated human-object proposals have relatively low qual-

ity for interaction classification [19], because only object-

level confidence has been taken into account. Moreover,

all pair-wise proposals need to be processed, which brings
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large redundant computation cost.

More recent approaches [35, 3, 19] have introduced a

surrogate interaction detection problem to optimize HOI de-

tection indirectly (Fig. 1(b)). Firstly, the interaction pro-

posal has been pre-defined based on human priors. For

example, UnionDet [3] defines the interaction proposal as

union box of the human and object box. PPDM [19] uses

the center point between human and object as interaction

point. Secondly, the human, object and interaction propos-

als are detected in parallel. Finally, each interaction result

is assigned to one (human, object) pair based on pre-defined

matching strategy in post processing. However, such defini-

tion of interaction proposal are not always valid under dif-

ferent circumstance and make the pipeline more complex

and costly in computation.

For HOI detection, how to capture the dependencies, es-

pecially long range, between human and object in the im-

age space is the main problem. The above methods used

complex but sub-optimal strategies, i.e. decouple into two-

stages or introduce surrogate proposals to empower models

the ability of capturing dependencies. However, the trans-

former network [32] is designed to exhaustively capture the

long range dependencies, which inspire us to address the

problem with transformer.

In this paper, we propose a new architecture to directly

predict the HOI instance, i.e. (human, object, interaction),

in an end-to-end manner. Our method consists of two parts,

a transformer encoder-decoder architecture and a quintuple

HOI matching loss. The architecture first use CNN back-

bone to extract high-level image features, then the encoder

is leveraged to generate global memory feature, which mod-

els the relation between the image feature explicitly. Next

the global memory from encoder and the HOI queries are

send to decoder to generate the output embeddings. Finally,

a multi-layer perception is used to predict HOI instances

based on the output embeddings of decoder. Meanwhile, a

quintuple HOI matching loss is proposed to supervise the

learning of HOI instance prediction. Our method achieves

state-of-the-art results on different challenging HOI bench-

marks.

2. Related work

2.1. Two­Stage HOI Detection

Modern two-stage HOI detection methods usually con-

sists of an object detector in the first stage and an interaction

classifier in the second stage. More specifically, In the first

stage, a fine-tuned object detector is used to get the human

and object bounding boxes and class labels. In the second

stage, a multi-stream architecture is used to predict the in-

teractions for each human-object pair.

Typically there are three streams in the mentioned multi-

stream interaction classifier: human stream, object stream,

and pairwise stream. Both human stream and object stream

usually encode visual features for human and object boxes

respectively [7]. In FCMNet [22], object visual feature is

replaced by word embedding for the reason that detailed vi-

sual appearance of the object is often not crucial for the in-

teraction category. Besides visual features, Bansal et. al [1]

introduced word embedding in human stream for feature

augmentation. PDNet [38] introduced word embedding for

all the streams to get language prior-guided channel atten-

tion and feature augmentation. Plenty of researches have

been done on the pairwise stream. This stream usually en-

codes the relationship between the human and object. A

two-channel binary image representation is first advocated

in iCAN [7] to encode the spatial relation, but in FCM-

Net [22], a fine-grained version from human parsing is pro-

posed to amplify the key cues. Apart from spatial relation,

graph neural networks in DRG [6], CHG [34], RPNN [39]

were proposed to explicitly model the interactions between

human and objects, which sure improved the model’s rep-

resentation capability.

Auxiliary models can be easily introduced to two-stage

pipeline to help improving HOI, e.g. human pose fea-

ture, human body-part [17], language model [26] and graph

model [37], etc. Interestingly Bansal et.al [1] and Hou

et.al [14] introduced feature level augmentation, which is

proved to be effective to HOI. However, these methods suf-

fer from heavy complexity and low efficiency due to the

sequential and separated two-stage architecture.

2.2. One­Stage HOI Detection

InteractNet [9] may be one of the earliest detection-based

methods but it needs cascaded inference. PPDM [19] and

IPNet [35] treated HOI as a point detection problem and di-

rectly detect interactions in a one stage manner by introduc-

ing a novel definition of interaction point. Further, PPDM

predicts both object detection and HOI detection in a unified

CenterNet-based [41] model. In UnionDet [3], HOI detec-

tion is regarded as a union box detection problem and based

on the popular RetinaNet [20], another unified one stage

HOI detection model is proposed, an extra union branch for

detecting union box is added parallel to the conventional

object detection branch.

Compared to two-stage methods, the pipeline becomes

simpler, faster, more efficient and easier to deploy for real

world applications. However, one-stage methods still need

complex post processing to group object detection results

and the interaction predictions.

2.3. End­to­End Object Detection

Russell [30] proposed an end-to-end people detection

method by LSTM-based encoder-decoder, which is an auto-

regressive model that predicts the output sequence one el-

ement at a time. DETR [4] improved it by by replacing
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Figure 2: Overall architecture. Our model first use a CNN backbone to extract visual feature from input image. Then

the feature is reduced in channel-dimension, flatten in spatial-dimension and complemented by positional encoding. The

transformer encoder generates the global memory feature based on K,Q, V . The transformer decoder transforms N learnt

positional embeddings (denoted as HOI queries) into N output embeddings. Finally, the multi-layer perception (MLP) predict

the quintuple HOI instance based on the embeddings. The HOI instances are directly output simultaneously.

LSTM with transformer, which decodes N objects in paral-

lel by leveraging the recent transformers with parallel de-

coding [24, 10, 8]. Both methods use Hungarian algorithm

to match the ground truths and predictions though different

matching costs are used. Unlike traditional object detectors,

the end-to-end methods, usually have an NMS free architec-

ture, and to make this reality, a good one-to-one matching

strategy for duplicates reduction is important, and Hungar-

ian matching seems to be a better choice so far.

3. Method

3.1. Overview

Different from previous methods, we solve human-

object interaction detection in an end-to-end manner both

in training and inference: input an image and then output

the HOI relations directly, without any post processing. The

proposed method consists of two main parts, an end-to-end

transformer encoder-decoder architecture and a quintuple

HOI instance matching loss.

3.2. Network Architecture

The proposed architecture illustrated in Fig. 2 consists

of three main parts: (i) a backbone to extract visual feature

from the input image, (ii) a transformer encoder-decoder

to digest backbone feature and produce output embeddings,

and (iii) a multi-layer perception (MLP) to predict HOI in-

stances.

Backbone: A CNN backbone is used to extract visual fea-

ture from the input image. First, a color image is fed into the

backbone and generate a feature map of shape (H,W,C)

which contains high level semantic concepts. A 1 × 1 con-

volution layer is used to reduce the channel dimension from

C to d. A flatten operator is used to collapse the spatial

dimension into one dimension. After that, a feature map

of shape [H × W,d] is obtained, denoted as flatten feature

in Fig. 2. The spatial dimension transformation is impor-

tant because the following transformer encoder requires a

sequence as input, thus the feature map can be interpreted as

a sequence of length H×W , and the value at each time step

is a vector of size d. We use ResNet [13] as our backbone

and reduce the dimension of feature conv-5 from C = 2048
to d = 256.

Encoder: The encoder layer is built upon standard trans-

former architecture with a multi-head self-attention module

and a feed-forward network (FFN). Theoretically the trans-

former architecture is permutation invariant. To enable it

distinguish relative position in the sequence, position en-

coding [25, 2] is added to the input of each attention layer.

The sum of flatten feature and positional encoding is fed

into the transformer encoder to summarize global informa-

tion. The output of the encoder is denoted as global memory

in Fig. 2.

Decoder: The decoder layer is also built upon the trans-

former architecture. Different from encoder layer, it con-

tains an additional multi-head cross attention layer. The de-

coder transforms N learnt positional embeddings (denoted

as HOI queries in Fig. 2) into N output embeddings. They

are then decoded into HOI instances by the following MLP,

which will be detailed in next section. In general, the de-

coder has three inputs, one is the global memory from en-

coder, one is HOI queries, and one is positional encoding.
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Figure 3: Illustration of the matching strategy between HOI

ground-truth (black) and prediction (other colors). An HOI

instance is represented by a pair of boxes in the same color.

h and o represent human and object respectively.

For multi-head cross attention layer, the value comes from

global memory directly. The key is the sum of global mem-

ory and the input position encoding. The query is the sum of

input position encoding and the input HOI queries. For self-

attention layer, all of the Query, Key, Value come from the

HOI queries or the output of previous decoder layer. The

output of the decoder is denoted as output embeddings in

Fig. 2. This architecture design follows [4].

MLP for HOI Prediction: We define each HOI instance as

a quintuple of (human class, interaction class, object class,

human box, object box). The output embedding for each

HOI query is decoded into one HOI instance by several

multi-layer perception (MLP) branches. Specifically, there

are three one-layer MLP branches to predict the human con-

fidence, object confidence and interaction confidence re-

spectively, and two three-layer MLP branches to predict hu-

man box and object box. All one-layer MLP branches for

predicting confidence use a softmax function. For human

confidence branch, the output size is 2, implies the confi-

dences for foreground and background. For object confi-

dence branch and interaction confidence branch, the out-

put size is C + 1, which implies the confidences for all C
kinds of objects or verbs defined in the dataset plus one for

background. For both human and object box branches, the

output size is 4, implies the normalized center coordinates

(xc, yc), height and width of the box.

3.3. HOI Instance Matching

The HOI instance is a quintuple of (ch, cr, co, bh, bo),
where (ch, cr, co) denotes human, interaction and object

class confidence, (bh, bo) is the bounding box of the human

and object. Two-stage HOI detectors first predict the ob-

ject proposals (ch, bh), (co, bo) with an object detector, then

enumerate the detected (human, object) pairs to predict the

cr by interaction classification. In other words, they are

trying to approximate the following probability in a given

dataset,
p(h, r, o) = p(h, o)p(r|h, o)

≈ p(h)p(o)p(r|h, o)
(1)

where p(h) and p(o) indicate the confidence of human and

object bounding box, respectively. p(r|h, o) denotes the

probability of interaction r given human box h and ob-

ject box o, often implemented by a multi-stream interaction

recognition model. In this method, the object detector and

the interaction classifier are separately optimized.

On the contrary, we treat HOI detection as a set predic-

tion problem of bipartite matching between predictions and

ground truth. Our method directly predicts the elements in

HOI set and optimizes the proposed HOI matching loss in a

unified way.

As shown in Fig. 3(a), suppose a ground truth (human,

fly, object) is in the image, and the model predicts two HOI

instances: the yellow one (human, fly, object), and the blue

one (human, hold, object). The yellow one not only predict

the interaction correctly but localize the human and object

more accurately as well. To minimize the matching cost, it

is more suitable to assign the black one to the yellow one,

and assign ∅ (implies nothing) to the blue one. A precise

and complete matching strategy is formulated in the follow-

ing.

Assume the model outputs a fixed-size set of N predic-

tions, where N is chosen to be larger than the number of

HOI relations in one image. Let us denote the set of pre-

dicted HOIs as P = pi, i = 1, 2, ..., N , the set of ground

truth HOIs as G = gi, i = 1, 2, ...,M, ∅, ..., ∅, where M ≤
N . M represents the number of ground truth in an image.

By padding ∅ to the ground truth set, we make the length of

two sets equal.

We denote the matching as an injective function: σG→P ,

where σ(i) is the index of predicted HOI assigned to the

i-th groundtruth. The matching cost function is defined as:

Lcost =

N
∑

i

Lmatch

(

gi, pσ(i)
)

(2)

where Lmatch

(

gi, pσ(i)
)

is a matching cost between ground

truth gi and prediction pσ(i).
In each step of training, we should first find an optimal

one-to-one matching between the ground truth set and the

current prediction set. We design the following matching

cost for HOI:

Lmatch

(

g
i
, p

σ(i)
)

= β1

∑

j∈h,o,r

αjL
j

cls + β2

∑

k∈h,o

Lk
box (3)

where Lj
cls = Lcls

(

gij , p
σ(i)
j

)

, j ∈ h, o, r represents hu-

man, object, and interactions, gij denotes the category label
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of j on ground-truth gi. We use standard softmax cross

entropy loss in the paper. Lk
box is box regression loss for

human box and object box, the weighted sum of GIoU [28]

loss and L1 loss are used. α and β are hyper-parameters of

loss weights, which will be discussed later in ablation study.

We use Hungarian algorithm [16, 4] to solve the follow-

ing problem to find a bipartite matching.

σ̂ = argmin
σ∈SN

Lcost (4)

where SN denotes the one-to-one matching solution space.

After the optimal one-to-one matching between the

ground truth and predictions is found, the network loss is

calculated between the matched pairs, using the same loss

function as Eq. 3. Although these two processes share the

same formulation, the hyper-parameters of them are dif-

ferent theoretically and may have different optimal values.

However, in practice, due to the considerable computation

cost brought by large hyper-parameter search space, we

made them the same, just as DETR [4] does.

Different from conventional HOI detection methods

which optimize object detector and interaction classifier

separately, the proposed HOI matching loss takes both the

classification and localization into account. Human and ob-

ject boxes will be produced simultaneously with their inter-

actions.

4. Experiments

4.1. Experimental Setting

Datasets: We conduct experiments on HICO-DET [5] and

V-COCO [11] benchmark to evaluate the proposed meth-

ods. HICO-DET consists of 47,776 images with more than

150K human-object pairs (38,118 images in training set and

9,658 in test set). It has 600 HOI categories over 117 inter-

actions and 80 objects. Further, 600 HOI categories has

been split into 138 Rare and 462 Non-Rare based on the

number of training instances. V-COCO is a subset of MS-

COCO [21], consists of 5,400 images in the trainval dataset

and 4946 images in test set. Each human is annotated with

binary labels for 29 different action categories (five of them

do not involve associated objects).

Evaluation Metric: Following the standard evaluation, we

use the commonly used role mean average precision (mAP)

to examine the model performance for both datasets. An

HOI detection is considered as true positive if and only

if it localizes the human and object accurately (i.e. the

Interaction-over-Union (IOU) ratio between the predicted

box and ground-truth is greater than 0.5) and predict the in-

teraction correctly.

Implementation Details

Data Augmentation: First, we adjust the brightness and

contrast with a probability of 0.5 as image level augmenta-

tion. Specifically, for both brightness and contract, a param-

eter is randomly chosen from the range [0.8, 1.2], meaning

only slight change is performed to original image. Next, we

use scale augmentation, scaling the input image such that

the shortest side is at least 480 and at most 800 pixels while

the longest at most 1333 [36]. And also, we use random flip

with a probability of 0.5. Finally, we apply random crop

augmentations: an image is cropped with probability 0.5 to

a random rectangular patch followed by another scale aug-

mentation to ensure its shape, it is noteworthy that if any

box in a given ground truth human-object pair is outside the

cropped patch, its label will be removed.

Training Settings: The input image to the model is first

scaled to [0, 1] and then normalized by channel-wise mean

and std. The experiments are conducted on two popular

backbone, ResNet-50 and ResNet-101. The models are

trained with AdamW [23] setting the transformer’s learning

rate to 1e-4, the backbone’s to 1e-5, and weight decay to 1e-

4. The number of encoder layer and decoder layer are both

set to 6, the number of HOI query is set to 100, and we use a

COCO pre-trained DETR [4] model to initialize the weights

of both backbone and transformer encoder-decoder. The

batch size for ResNet-50 is set to 16 while 8 for ResNet-

101. All the models are trained for 250 epochs with once

learning rate decay at epoch 200. Training our network

takes 7 hours on 8 NVIDIA 2080TI GPU on V-COCO and

70 hours on HICO-DET. At test times, our model runs at 24

fps on a single 2080TI GPU.

4.2. Comparisons with State­of­the­Art methods

We report the main quantitative resutls in terms of AP on

HICO-DET in Table 1 and AProle on V-COCO in Table 2.

For the HICO-DET dataset, our method compares

against state-of-the-art algorithms. We achieve 4.88% point

gain over one-stage methods [19] on Full categories, es-

pecially 5.37% point on Rare categories. Compared with

those two-stage methods, our method achieves best perfor-

mance on Full categories without introducing additional hu-

man pose feature and languages prior, which shows great

potential of our method. Meanwhile, we humbly regard

how to improve performance on Rare due to the long-tail

distribution of HOI detection as a significant future work in

our framework.

For the V-COCO dataset, our method also achieves

the competitive performance compared with state-of-the-

art methods without introducing external data, e.g. human

pose, HICO-DET data, language prior knowledge. We ob-

tain 1.9% point gain over previous one-stage method [35].

4.3. Ablation Study

In our ablation study, we explore how the matching strat-

egy, loss weight, and data augmentation influence the final

performance. The ablation experiments are conducted with
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Default Known Object

Methods Feature Backbone Detector Pose Language Full↑ Rare↑ NonRare↑ Full↑ Rare↑ NonRare↑
Two-stage methods

Shen et al. [29] VGG-19 COCO 6.46 4.24 7.12 - - -

HO-RCNN [5] CaffeNet COCO 7.81 5.37 8.54 10.41 8.94 10.85

InteractNet [9] ResNet-50-FPN COCO 9.94 7.16 10.77 - - -

GPNN [27] ResNet-101 COCO 13.11 9.34 14.23 - - -

iCAN [7] ResNet-50 COCO 14.84 10.45 16.15 16.26 11.33 17.73

PMFNet-Base [33] ResNet-50-FPN COCO 14.92 11.42 15.96 18.83 15.30 19.89

PMFNet [33] ResNet-50-FPN COCO X 17.46 15.65 18.00 20.34 17.47 21.20

No-Frills [12] ResNet-152 COCO X 17.18 12.17 18.68 - - -

TIN [18] ResNet-50 COCO X 17.22 13.51 18.32 19.38 15.38 20.57

CHG [34] ResNet-50 COCO 17.57 16.85 17.78 21.00 20.74 21.08

Peyre et al. [26] ResNet-50-FPN COCO X 19.40 14.63 20.87 - - -

VSGNet [31] ResNet152 COCO 19.80 16.05 20.91 - - -

FCMNet [22] ResNet-50 COCO X X 20.41 17.34 21.56 22.04 18.97 23.12

ACP [15] ResNet-152 COCO X X 20.59 15.92 21.98 - - -

Bansal et al. [1] ResNet-50-FPN HICO-DET X 21.96 16.43 23.62 - - -

PD-Net [38] ResNet-152 COCO X 20.81 15.90 22.28 24.78 18.88 26.54

PastaNet [17] ResNet-50 COCO X X 22.65 21.17 23.09 24.53 23.00 24.99

VCL [14] ResNet101 HICO-DET 23.63 17.21 25.55 25.98 19.12 28.03

DRG [6] ResNet-50-FPN HICO-DET X 24.53 19.47 26.04 27.98 23.11 29.43

One-stage methods

UnionDet [3] ResNet-50-FPN HICO-DET 17.58 11.52 19.33 19.76 14.68 21.27

IPNet [35] Hourglass COCO 19.56 12.79 21.58 22.05 15.77 23.92

PPDM [19] Hourglass HICO-DET 21.73 13.78 24.10 24.58 16.65 26.84

Ours ResNet-50 - 23.46 16.91 25.41 26.15 19.24 28.22

Ours ResNet-101 - 26.61 19.15 28.84 29.13 20.98 31.57

Table 1: Comparison with the state-of-the-art methods on HICO-DET test set. For the Detector, COCO means that the

detector is trained on COCO, while HICO-DET means that the detector is first trained on COCO and then fine-tuned on

HICO-DET. Pose means that human pose feature extracted by pre-trained skeleton model. Language means that languages

prior, e.g. words2vec. Our methods achieve best performance on Full categories without introducing additional human pose

feature, external language prior, and object detector.

ResNet-50 backbone models, and the models are trained for

250 epochs with once learning rate decay at epoch 200. The

number of encoder layer and decoder layer are both set to

6, the number of HOI query is set to 100, and the batch

size is set to 16. We use a COCO pre-trained DETR model

to initialize the weights of both backbone and transformer

encoder-decoder.

Our baseline set all the loss weight hyper-parameters to

1.0, and uses only brightness, contrast and random flip aug-

mentation.

Matching Strategy: Consider the situation in Fig. 3(b),

black boxes indicate a ground truth pair, green boxes in-

dicate a predicted pair, and red boxes indicate another pre-

dicted pair. For simplicity, we assume that both human and

object boxes are in the right place and the object class cat-

egory is correct. Then we can see, for the red pair, both

human and object boxes have higher overlap with the black

ones, but its interaction prediction ‘hit’ is wrong, note that

the interaction label of ground truth is ‘kick’. For the green

pair, the interaction prediction ‘kick’ is right, while its hu-

man box is obviously far from the ground truth. So in this

case, which pair to match with the ground truth is confused,

location first or category first? We conduct ablation study

to find the relative importance in matching. In Eq. 3, β1,

β2 dominates the weight of classification and localization

respectively. As shown in Table. 3b, the best result is ob-

tained under β1 = 2.0, β2 = 1.0, which reflects that classi-

fication plays a more important role than localization during

the matching process.

Loss Ablation: The human/object/interaction are

2/81/117-category classification problems in HICO-

DET. ‘human’ has sufficient training data because it

appears in each HOI instance. Therefore, we assume

human classification as the simplest one and set αh = 1.
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Methods Backbone Pose Language AProle

Two-stage methods

VSRL [11] ResNet-50-FPN 31.8

InteractNet [9] ResNet-50-FPN 40.0

GPNN [27] ResNet-101 44.0

RPNN [39] ResNet50 X 47.5

VCL [14] ResNet101 48.3

TIN∗ [18] ResNet-50 X 48.7

Zhou et al. [40] ResNet-50 X 48.9

PastaNet [17] ResNet-50 X X 51.0

DRG [6] ResNet-50-FPN X 51.0

VSGNet [31] ResNet-152 51.8

CHG [34] ResNet-50 52.7

PMFNet [33] ResNet-50-FPN X 52.0

PD-Net [38] ResNet-152 X 52.6

FCMNet [22] ResNet-50 X X 53.1

ACP∗ [15] ResNet-152 X X 53.2

One-stage methods

UnionDet [3] ResNet-50-FPN 47.5

IPNet [35] Hourglass-104 51.0

IPNet∗ [35] Hourglass-104 52.3

Ours ResNet-101 52.9

Table 2: Comparisons of the state-of-the-art on V-COCO

test set. Pose denotes whether human skeleton feature has

been introduced and Language denotes external-language

prior. Character ∗ indicates that HICO-DET training data

was incorporated into training data.

We conduct experiments to evaluate the relative importance

of ‘object’ and ‘interaction’ in our experiments. In Eq. 3,

αo and αr dominate the weight of object and interaction

respectively in training loss. As shown in Table. 3a, our

method obtains best result when αr = 2.0 and αo = 1.0,

indicating that interaction tends to be more important than

object in our framework.

Data Augmentation: We mainly study two kinds of data

augmentation in our experiments: multi-scale training and

random crop. We conduct ablation experiments on combi-

nation of them, results can be found in Table. 3c. Consid-

erable improvements have been made, multi-scale training

attains 4.29% point gain on Full categories and random crop

achieves 5.08%, and the combination of them gets even bet-

ter results, mainly because these two augmentations help the

attention layers to learn scale-invariant and shift-invariant

features much easier on a small dataset.

4.4. Discussion

We formulate HOI detection as a set prediction problem

and directly predict instances in an end-to-end manner. So,

compared with previous methods, which are trained on HOI

instance level, treating human-object pair as data point, our

αr αo Full↑ Rare↑ NonRare↑
1.0 1.0 16.97 11.65 18.55

1.0 2.0 17.49 11.47 19.29

2.0 1.0 17.85 13.54 19.14

(a) Varying α for classification loss

β1 β2 Full↑ Rare↑ NonRare↑
1.0 1.0 16.97 11.65 18.55

1.0 2.0 16.20 9.54 18.19

2.0 1.0 18.46 13.41 19.97

(b) Varying β for match cost

scale crop Full↑ Rare↑ NonRare↑
16.97 11.65 18.55

X 22.05 15.20 24.09

X 21.26 14.61 23.25

X X 22.36 15.47 24.42

(c) Data augmentation during training process

Table 3: Ablation experiments for HOI Transformer. All

models use ResNet-50 backbone to extract feature; number

of queries is set to 100; batch size is set for 16; trained for

250 epochs; learning rate decay from 1e-4 to 1e-5 at epoch

200.

Figure 4: Out of distribution generalization for HOI predic-

tion. Even though no images in the training set has more

than 3 ‘drink with bottle’ HOIs, our method generalize well

on the synthetic image with 6 of them.

method regards a whole image as data point. There seems

some differences. Here we briefly discuss our understand-

ing on two aspects.

Image-level data point. First, the training loss for inter-

action in our method is the sum of classification loss be-

tween each matched (pred, GT) pair. It is relevant to the

number of positive samples, which is consistent with prior

instance-level work. Second, random crop augmentation

provides sufficient training instances. For example, let’s

think random crop in an extreme way, each time only one

positive sample is cropped, then it is close to prior work.
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Figure 5: Visualization of attention map in decoder for predicted HOI instance (images from HICO-DET dataset). As can

be seen from the figure, our method attends to the discriminative part (e.g. telephone for talk on, human face for kiss) and

can capture long-distance interaction (e.g. fly and pull). Moreover, it can be seen from the figure that different interaction

categories share little common pattern, which suggests that a unified definition for all interaction proposal may be sub-

optimal.

Out of distribution test. Noting that in training data there

are at most 3 ‘drink with bottle’ HOIs in a single image,

we create a synthetic image containing 6 ‘drink with bottle’

HOIs, which is out of distribution. As shown in Fig. 4, the

result indicates that the model can learn to recognize HOIs

with good generalization.

4.5. Qualitative Analysis

As can be seen from Fig. 5, we visualize the decoder at-

tention map for predicted HOI instances. The interaction

heatmap highlights both the human and object area, mean-

ing that our model reasons about the relations between hu-

man and object from a more global image context, not fo-

cusing on human or object only. It is obvious that decoder

has ability to find the discriminative part for the interaction

category. The model can predict different instances based

on similar attention heatmap, which implies that, the MLP

of the model have the ability to tell from fine-grained inter-

action features. Meanwhile, some local area with relatively

higher attention may indicate the localization (boundaries)

of human or object, because the visualized attention map is

immediately followed by the MLP head for classification as

well as regression. Moreover, it can be seen from the figure

that different interaction categories share little common pat-

tern, which suggests that the empirically unified definition

of interaction proposal in one-stage methods, i.e. interac-

tion point/box, is sub-optimal. And thanks to the large re-

ceptive field of attention layers, our model can easily handle

long distance interaction, e.g. fly kite.

5. Conclusion

In this paper, we propose a novel HOI Transformer to

directly predict the HOI instances in an end-to-end manner.

Our core idea is to build a transformer encoder-decoder ar-

chitecture to directly predict HOI instances, and a quintuple

matching loss for HOI to enable supervision in a unified

way. We validate the proposed method on two challenging

HOI benchmark and achieve a considerable performance

boost over state-of-the-art results. It is worth noting that our

method not only abandon the additional features, but desert

the complex post processing as well. Moreover, based on

the attention map of the decoder, we found that our model

has ability to dynamically attains the discerning feature for

different HOI queries. We hope our method will be useful

for human activity understanding research.
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