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This supplementary materials provide additional details
and results of our method. We first discuss additional de-
tails of our networks in Sec. 1. Then, we explain the train-
ing details in Sec. 2. Afterwards, Sec. 3 presents ablation
experiments carried out to validate our choice of hyperpa-
rameters and loss terms. In Sec. 4, we present our experi-
ments performed to train a “universal” recoloring model to
recolor images taken from arbitrary domains. Sec. 5 dis-
cusses failure cases of our method. Such failure cases can
often be mitigated by applying simple post-processing. The
post-processing details in Sec. 6. Sec. 6 also discuss post-
processing to deal with high-resolution images. Lastly, ad-
ditional results are given in Sec. 7.

1. Details of Our Networks
Our discriminator network, used in all of our experi-

ments, consists of a sequence of log2(N)1 residual blocks,
where N is the image width/height, and the last layer is an
fully connected (fc) layer that produces a scalar feature. The
first block accepts a three-channel input image and produce
m output channels. Then, each block i produces 2mi−1 out-
put channels (i.e., duplicate the number of output channels
of the previous block). The details of the residual blocks
used to build our discriminator network are shown in Fig. 1.

Figure 2 provides the details of our encoder, decoder and
GAN blocks used in our ReHistoGAN (used for image re-
coloring). As shown, we modified the last two blocks of
our HistoGAN’s to accept the latent feature passed from the
first two blocks of our encoder. This modification helps our
HistoGAN’s head to consider both information of the input
image structure and the target histogram in the recoloring
process.

2. Training Details
We train our networks using an NVIDIA TITAN X (Pas-

cal) GPU. For HistoGAN training, we optimized both the
generator and discriminator networks using the diffGrad op-
timizer [11]. In all experiments, we set the histogram bin, h,
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Figure 1: Details of the residual discriminator block used
to reconstruct our discriminator network. The term P and S
refer to the padding and stride used in each layer.

to 64 and the fall-off parameter of our histogram’s bins, τ ,
was set to 0.02. We adopted the exponential moving average
of generator network’s weights [15,16] with the path length
penalty, introduced in StyleGAN [16], every 32 iterations to
train our generator network. Due to the hardware limitation,
we used mini-batch of 2 with accumulated gradients every
16 iteration steps and we set the image’s dimension, N , to
256. We set the scale factor of the Hellinger distance loss,
α, to 2 (see Sec. 3 for an ablation study).

As mentioned in the main paper, we trained our His-
toGAN using several domain datasets, including: human
faces [15], flowers [26], cats [9], dogs [17], birds [32],
anime faces [8], human hands [1], bedrooms [34], cars [18],
and aerial scenes [24]. We further trained our HistoGAN us-
ing 4,316 landscape images collected from Flickr1. The col-
lected images have one of the following copyright licenses:
no known copyright restrictions, Public Domain Dedication
(CC0), or Public Domain Mark. See Fig. 3 for representa-
tive examples from the landscape set.

To train our ReHistoGAN, we used the diffGrad opti-
mizer [11] with the same mini-batch size used to train our
HistoGAN. We trained our network using the following hy-
perparameters α = 2, β = 1.5, γ = 32 for 100,000 iter-
ations. Then, we continued training using α = 2, β = 1,
γ = 8 for additional 30,000 iterations to reduce potential

1Our landscape image set: https://github.com/mahmoudnafifi/HistoGAN
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Figure 2: Details of our ReHistoGAN network. We modi-
fied the last two blocks of our HistoGAN by adding a gate
for the processed skipped features from the first two blocks
of our encoder.

Figure 3: Examples taken from our set of 4,316 landscape
images collected from Flickr.

artifacts in recoloring (see Sec. 3 for an ablation study).

3. Ablation Studies

We carried out a set of ablation experiments to study
the effect of different values of hyperparameters used in the
main paper. Additionally, we show results obtained by vari-
ations in our loss terms.

We begin by studying the effect of the scale factor, α,
used in the loss function to train our HistoGAN. This scale
factor was used to control strength of the histogram loss
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Figure 4: Results obtained by training our HistoGAN in
hand images [1] using different values of α.

Table 1: Results of our HistoGAN using different values of
α. In this set of experiments, we used the Hands dataset [1]
as our target domain. The term FID stands for the Frechét
inception distance metric [14]. The term KL Div. refers
to the KL divergence between the histograms of the input
image and generated image, while the term H. dis. refers to
Hellinger distance.

RGB-uv hist.
α FID KL Div. H dist.

0.2 1.9950 0.3935 0.3207
2 2.2438 0.0533 0.1085
4 6.8750 0.0408 0.0956
8 9.4101 0.0296 0.0822

16 15.747 0.0237 0.0743

term. In this set of experiments, we used the 11K Hands
dataset [1] to be our target domain and trained our Histo-
GAN with the following values of α: 0.2, 2, 4, 8, and 16.
Table 1 shows the evaluation results using the Frechét in-
ception distance (FID) metric [14], the KL divergence, and
Hellinger distance. The KL divergence and Hellinger dis-
tance were used to measure the similarity between the tar-
get histogram and the histogram of GAN-generated images.
Qualitative comparisons are shown in Fig. 4

Figure 5 shows examples of recoloring results obtained
by trained ReHistoGAN models using different combina-
tion values of α, β, γ. As can be seen, a lower value of
the scale factor, α, of the histogram loss term results in ig-
noring our network to the target colors, while higher val-
ues of the scale factor, γ, of the discriminator loss term,
make our method too fixated on producing realistic output
images, regardless of achieving the recoloring (i.e., tending
to re-produce the input image as is).

In the recoloring loss, we used a reconstruction loss term
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Figure 5: Results of recoloring by training our recoloring network using different values of α, β, and γ hyperparameters.
The highlighted results refer to the settings used to produce the reported results in the main paper and the supplementary
materials.

Sobel LaplacianInput image Target colors

Figure 6: Results of two different kernels used to compute
the reconstruction loss term.

to retain the input image’s spatial details in the output re-
colored image. Inspired by image seamless cloning meth-
ods (e.g., [3, 27]), our reconstruction loss is based on the
derivative of the input image. We have examined two dif-
ferent kernels, which are: the vertical and horizontal 3×3
Sobel kernels (i.e., the first-order derivative approximation)
and the 3×3 Laplacian kernel (i.e., the second-order deriva-
tive). We found that training using both kernels give reason-
ably good results, while the Laplacian kernel produces more
compiling results in most cases; see Fig. 6 for an example.

In the main paper, we introduced a variance loss term to

Input image Target colors w/o variance loss w/ variance loss

Figure 7: The impact of the variance loss term. The shown
results were obtained by training our ReHistoGAN with and
without the variance loss term.

encourage our network to avoid the global color cast solu-
tion for image recoloring. Figure 7 shows an example of
the global color cast problem, where the network applies a
global color shift to the input image to match the target his-
togram. As shown in Fig. 7 after training our network with
the variance loss, this problem is reduced.

4. Universal ReHistoGAN Model
As the case of most GAN methods, our ReHistoGAN

targets a specific object domain to achieve the image recol-
oring task. This restriction may hinder the generalization
of our method to deal with images taken from arbitrary do-
mains. To deal with that, we collected images from a dif-
ferent domain, aiming to represent the “universal” object
domain.

Specifically, our training set of images contains ∼2.4
million images collected from different image datasets.
These datasets are: collection from the Open Images dataset
[19], the MIT-Adobe FiveK dataset [6], the Microsoft
COCO dataset [22], the CelebA dataset [23], the Caltech-
UCSD birds-200-2011 dataset [32], the Cats dataset [9],
the Dogs dataset [17], the Cars dataset [18], the OxFord
Flowers dataset [26], the LSUN dataset [34], the ADE20K
dataset [35, 36], and the FFHQ dataset [15]. We also added
Flickr images collected using the following keywords:
landscape, people, person, portrait, field,
city, sunset, beach, animals, living room,
home, house, night, street, desert, food. We
have excluded any grayscale image from the collected im-
age set.

We trained our “universal” model using m = 18 on this
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Figure 8: Results of domain-specific and universal ReHis-
toGAN models. We show results of using a given target
histogram for recoloring and two examples of the auto re-
coloring results of each model.

collected set of 2,402,006 images from several domains.
The diffGrad optimizer [11] was used to minimize the same
generator loss described in the main paper using the fol-
lowing hyperparameters α = 2, β = 1.5, γ = 32 for
150,000 iterations. Then, we used α = 2, β = 1, γ = 8
to train the model for additional 350,000 iterations. We set
the mini-batch size to 8 with an accumulated gradient every
24 iterations. Figure 8 show results of our domain-specific
and universal models for image recoloring. As can be seen,
both models produce realistic recoloring, though the univer-
sal model tends to produce recolored images with less vivid
colors compared to our domain-specific model. Additional
examples of auto recoloring using our universal model are
shown in Fig. 9.

Input image Auto recolored images

antxoa Flickr-CC BY-NC-SA 2.0

Jerome Bernard Flickr-CC BY-NC-SA 2.0

Figure 9: Auto recoloring using our universal ReHistoGAN
model.
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Figure 10: Failure cases of HistoGAN and ReHistoGAN.
Our HistoGAN fails sometimes to consider all colors of tar-
get histogram in the generated image. Color bleeding is
another problem that could occur in ReHistoGAN’s results,
where our network could not properly allocate the target (or
sampled) histogram colors in the recolored image.

Input image Target colors Recolored image

Post-color transfer Pitié and Kokaram Xiao et al.

Figure 11: To reduce potential color bleeding artifacts, it is
possible to apply a post-color transfer to our initial recol-
ored image colors to the input image. The results of adopt-
ing this strategy are better than applying the color transfer
to the input image in the first place. Here, we use the color
transfer method proposed by Pitié and Kokaram [28] as our
post-color transfer method. We also show the results of di-
rectly applying Pitié and Kokaram’s [28] method to the in-
put image.

5. Limitations

Our method fails in some cases, where the trained His-
toGAN could not properly extract the target color informa-
tion represented in the histogram feature. This problem is
due to the inherent limitation of the 2D projected represen-
tation of the original target color distribution, where differ-
ent colors are mapped to the same chromaticity value in the
projected space. This is shown in Fig. 10-top, where the
GAN-generated images do not have all colors in the given
target histogram. Another failure case can occur in image
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Bobby Moinahan Flickr-Public Domain Mark 1.0

Figure 12: We apply the bilateral guided upsampling [7]
as a post-processing to reduce potential artifacts of dealing
with high-resolution images in the inference phase. In the
shown example, we show our results of recoloring using an
input image with 2048×2048 pixels.

Target colors StyleGAN + ResNet proj. Ours
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RGB: KL Div. = 1.35, H dis. = 0.74
RGB-uv: KL Div. = 0.23, H dis. = 0.24
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Fredrik Alpstedt Flickr-CC BY-NC-SA 2.0

Figure 13: Comparison with generated images using Style-
GAN [16] with latent space projection (see the main paper
for more details) and our results.

recoloring, where the recolored images could have some
color-bleeding artifacts due to errors in allocating the tar-
get/sampled histogram colors in the recolored image. This
can be shown in Fig. 10-bottom

6. Post-Processing
As discussed in Sec. 5, our method produces, in some

times, results with color bleeding, especially when the tar-
get histogram feature has unsuitable color distribution for
the content of the input image. This color-bleeding prob-
lem can be mitigated using a post-process color transfer be-
tween the input image and our initial recoloring. Surpris-

Target colors 
(Input shape & background 

for MixNMatch)

MixNMatch Ours

RGB: KL Div. = 3.92, H dis. = 0.89 
RGB-uv: KL Div. = 1.65, H dis. = 0.63

RGB: KL Div. = 2.58, H dis. = 0.74
RGB-uv: KL Div. = 0.52, H dis. = 0.33

RGB: KL Div. = 1.49, H dis. = 0.74
RGB-uv: KL Div. = 0.77, H dis. = 0.43

RGB: KL Div. = 1.35, H dis. = 0.74
RGB-uv: KL Div. = 0.39, H dis. = 0.32

Figure 14: Additional comparison with the MixNMatch
method [21]. In these examples, the target images were
used as input shape and background images for the MixN-
Match method.

ingly, this post-processing mapping produces results better
than adopting the mapping in the first place—namely, ap-
plying the color transfer mapping without having our inter-
mediate recoloring result.

Figure 11 shows an example of applying Pitié, and
Kokaram’s method [28] as a post-processing color transfer
to map the colors of the input image to the colors of our
recolored image. In the shown figure, we also show the re-
sult of using the same color transfer method – namely, Pitié
and Kokaram’s method [28] – to transfer the colors of the
input image directly to the colors of the target image. As
shown, the result of using our post-process strategy has a
better perceptual quality.

Note that except for this figure (i.e., Fig. 11), we did
not adopted this post-processing strategy to produce the re-
ported results in the main paper or the supplementary mate-
rials. We discussed it here as a solution to reduce the poten-
tial color bleeding problem for completeness.

As our image-recoloring architecture is a fully convolu-
tional network, we can process testing images in any arbi-
trary size. However, as we trained our models on a specific
range of effective receptive fields (i.e., our input image size
is 256), processing images with very high resolution may
cause artifacts. To that end, we follow the post-processing
approach used in [2] to deal with high-resolution images
(e.g., 16-megapixel) without affecting the quality of the re-
colored image.

Specifically, we resize the input image to 256×256 pix-
els before processing it with our network. Afterward, we
apply the bilateral guided upsampling [7] to construct the



Generated images (each row shares the same sampled histogram)

(B) HistoGAN (ours)

(A) StyleGAN

Generated images (each row shares the style vector of the last two blocks)

Random
style vectors

StyleGAN
image 

generator

HistoGAN
image 

generator

Sampled 
histograms

Figure 15: Our HistoGAN can be used to generate “unlimited” number of random samples, exactly like traditional StyleGANs
[15, 16], by sampling from a pre-defined set of histograms to generate target histograms. In the shown figure, we show
generated images by StyleGAN [15, 16] and our HistoGAN. In each row of the StyleGAN-generated images, we fixed the
fine-style vector of the last two blocks of the StyleGAN, as these blocks are shown to control the fine-style of the generated
image [16]. We also fixed the generated histogram for each row of our HistoGAN-generated images.

mapping from the resized input image and our recoloring
result. Then, we apply the constructed bilateral grid to the
input image in its original dimensions. Figure 12 shows an
example of our recoloring result for a high-resolution image
(2048×2048 pixels). As can be seen, our result has the same
resolution as the input image with no artifacts.

7. Additional Results

This section provides additional results generated by our
HistoGAN and ReHistoGAN. As discussed in the main pa-
per, we trained a regression ResNet [13] model to learn
the back-projection from the generated images into the cor-
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Figure 16: Additional examples of generated images using our HistoGAN. The target colors histograms were computed from
the shown target images (left column).

responding fine-style vectors of StyleGAN [16]. This re-
gression model was used to compareHistoGAN and Style-
GAN’s ability to control the generated images’ colors given
a target color distribution. Figure 13 shows a qualita-
tive comparison between the results of our HistoGAN and
StyleGAN with this projection approach. We show addi-
tional qualitative comparisons with the recent MixNMatch
method [21] in Fig. 14. In the shown figures, we show the
KL divergence and the Hellinger distance between the his-
tograms of the GAN-generated images and the target his-
togram.

Our HistoGAN, along with the sampling procedure
(used for auto recoloring in the main paper) can be used to

turn our HistoGAN into a traditional GAN method, where
there is no need for any user intervention to input the tar-
get histograms. Figure 15 shows an example of using our
sampling procedure to generate random histogram samples.
The generated histogram samples are used by HistoGAN to
generate “unlimited” number of samples. In the shown fig-
ure, we compare between our HistoGAN results, using the
generated histograms, with StyleGAN [16]. In Fig.15-(A),
each row shows generated examples with a fixed fine-style
vectors, which are used by the last two blocks of the Style-
GAN as these blocks are shown to control the fine-style
(e.g., colors, lighting, etc.) of the generated image [15, 16].
In Fig.15-(B), each row shows generated images using our
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Figure 17: Additional comparisons with image recoloring/style transfer methods. We compare our results with results of the
following methods: Reinhard et al., [29], Xiao et al., [33], Pitié and Kokaram [28], Nguyen et al., [25], and Sheng et al., [30].

HistoGAN with a fixed generated histogram. As shown in
the figure, our HistoGAN generates samples with a higher
color diversity compared to StyleGAN results.

Figure 16 shows additional HistoGAN-generated images
from different domains. In each row, we show example im-
ages generated using the corresponding input target colors.
We fixed the coarse- and middle-style vectors, for each do-
main, to show the response of our HistoGAN to changes in
the target histograms.

In the main paper, we showed comparisons with differ-
ent image recoloring and style transfer methods. Figure 17
shows additional qualitative comparisons. Note that Gaty et
al.’s optimization method [12] takes ∼4 minutes to process a
single image. In contrast, our ReHistoGAN processes a sin-
gle image in ∼0.5 seconds without the guided upsampling
procedure [7], and ∼22 seconds with an unoptimized im-
plementation of the guided upsampling using a single GTX
1080 GPU. Further qualitative examples are shown in Fig.
18. As can be seen, our ReHistoGAN successfully transfers
the target colors to the recolored images naturally.

As mentioned in the main paper, there are a few attempts
to achieve auto recoloring (e.g., [4, 5, 10, 20]). The high-
resolution daytime translation (HiDT) method [5], for ex-
ample, achieves the auto-style transfer by sampling from
a pre-defined set of target styles. We compared our method
and the HiDT method in the main paper, where we used one

of the pre-defined target styles as our target histogram. This
idea of having a pre-defined set of target styles was orig-
inally proposed in [20], where a set of transient attributes
are used to search in a dataset of different target styles.
These methods, however, are restricted to the semantic con-
tent of the target styles to match the semantic content of
training/testing input images. Unlike these auto recolor-
ing/style transfer methods, our ReHistoGAN can deal with
histograms taken from any arbitrary domain, as shown in
our results in the main paper and these supplementary ma-
terials. In Fig. 19, we show qualitative comparisons of the
recoloring results using our universal ReHistoGAN and the
method proposed in [20].

Another strategy for image recoloring is to learn a di-
verse colorization model. That is, the input image is con-
verted to grayscale, and then a trained method for diverse
colorization can generate different colorized versions of the
input image. In Fig. 20, we show a qualitative compari-
son with the diverse colorization method proposed by Desh-
pande et al., [10].

Lastly, we show additional qualitative comparisons with
the recent auto-recoloring method proposed by Afifi et al.,
[4] in Fig. 21. The figure shows the results of domain-
specific ReHistoGAN models (the first four rows) and the
universal ReHistoGAN model (the last three rows). As can
be seen from the shown figures, our ReHistoGAN arguably
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Figure 18: Additional results for image recoloring. We recolor input images, shown in the right by feeding our network with
the target histograms of images shown in the top.

produces more realistic recoloring compared to the recolor-
ing results produced by other auto recoloring methods.
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