MIST: Multiple Instance Spatial Transformer

Supplementary Material

A. Heatmap network architectures

Standard architecture. Our standard architecture is the
multiscale heatmap network is inspired by LF-Net [38]. We
employ a fully convolutional network to produce a single
heatmap for each scale indexed by s = 1....5, on the input
image Z. Specifically, for each scale we first scale the im-
age proportionally to the inverse of the scale producing Zy,
execute the network #,, on it, and finally scale the heatmap
back to the original resolution. This strategy ensures that
the network cannot implicitly favor a particular scale and
produces scale-independent responses.

This process generates a multiscale heatmap tensor h =
{hs} of size H x W x S where hy = #,(Z;), and H
is the height of the image and W is the width. For the
convolutional network we use 4 ResNet blocks [21], where
each block is composed of two 3 x 3 convolutions with 32
channels and relu activations without any downsampling.
We then perform a local spatial softmax operator [38] with
spatial extent of 15 X 15 to sharpen the responses. Then we
further relate the scores across different scales by performing
a “softmax pooling” operation over scale. Specifically, if we
denote the heatmap tensor after local spatial softmax as h =
{h,}, since after the local spatial softmax 7L, (Z;) is already
an “exponentiated” signal, we do a weighted normalization
without an exponential, i.e. h’ = 3" _hs(h,/ Y, (hy +¢)),
where € = 1076 is added to prevent division by zero.

Note that differently from LF-Net [38], we do not perform
a softmax along the scale dimension. The scale-wise softmax
in LF-Net is problematic as the computation for a softmax
function relies on the input to the softmax being unbounded.
For example, in order for the softmax function to behave
as a max function, due to exponentiation, it is necessary
that one of the input value reaches infinity (i.e. the value
that will correspond to the max), or that all other values to
reach negative infinity. However, at the network stage where
softmax is applied in [38], the score range from zero to one,
effectively making the softmax behave similarly to averaging.
Our formulation does not suffer from this drawback.

Backbone-based heatmap network. For experiments on
natural images, we restrict the detector to only localize the
objects without estimating object scales to simplify the task.
Therefore, we only use a single-scale heatmap for this setting.
Also, because the number of images in our dataset is limited,
we leverage a pretrained ResNet34 [21] as the backbone
feature extractor. Specifically, we resize the input images to
have a shorter edge of 224 pixels and use the output of fourth
convolution block — a tensor of H/16 x W/16 x 256 where

H and W are the height and the width of the input image,
respectively, and 256 is the number of channels. We further
append a 1 x 1 conv layers to reduce the heatmap to have 3
channels: response, z-offset, and y-offset. We make use of
offsets since our heatmap size is only 1/16 of the input image
size, and integer pixel coordinates on the heatmap cannot
provide accurate localization on the input image. We also do
not use a local spatial softmax operator for this setting due to
small heatmap size. While not using spatial softmax makes
our heatmaps similar to the ones in [30], we note that we still
rely on top-K, rather than the sampling-without-replacement
approach of [30], and is therefore easy to expand to various
K.

B. Generative model for the heatmap

Standard architecture. To convert optimized locations into
ideal heatmaps (see Section 4.1), as our standard architecture
we apply a simple model where the heatmap is zero every-
where else except on the corresponding keypoint locations
(patch center). However, as the optimized patch parameters
can be floats corresponding to subpixel locations, we need
to quantize them with care to turn them back into a heatmap .
For the spatial locations we simply round to the nearest pixel,
which at most creates a quantization error of half a pixel,
which does not cause problems in practice. For scale how-
ever, simple nearest-neighbor assignment causes too much
quantization error as our scale-space is sparsely sampled. We
therefore assign values to the two nearest neighboring scales
in a way that the center of mass would be the optimized scale
value, making sure {x;} = Ex (G({xx})).

Backbone-based heatmap network. For the backbone-
based network, as the feature map is very coarse, we found
using a single pixel insufficient. Hence, we use a Gaussian
kernel to reconstruct the first channel (response channel) of
the ideal heatmap from the optimized keypoints:

k
= Y exp(—5(xi) — 'S (x) — p)

where | x; | are the rounded optimized keypoints, p is a pixel
location on heatmap. We use one eighth of the patch size as
the values of the diagonal covariance matrix .

For the x and y offset channels we only supervise pixels

which contain optimized keypoints:
HYY =x; — [x;] ifp=|xi]i €x. (10)

To train the detector, we use the /5 loss for response channel
as in Equation 7, and for the offset channels we use a Huber

lasin [17]:

{0.5952 if |2 < 1
loss =

loss [

(1)

|z| — 0.5 otherwise

C. Additional implementation details
C.1. Task-specific networks

MIST auto-encoder network. The input layer of the au-
toencoder is 32 x 32 x C where C' is the number of color
channels. We use five up/down-sampling levels. Each level
is made of three standard non-bottleneck ResNet v1 blocks
[21] and each ResNet block uses a number of channels that
doubles after each downsampling step. ResNet blocks use
3 x 3 convolutions of stride 1 with ReL.U activation. For
downsampling we use 2D max pooling with 2 x 2 stride and
kernel. For upsampling we use 2D transposed convolutions
with 2 x 2 stride and kernel. The output layer uses a sig-
moid function, and we use layer normalization before each
convolution layer.

MIST classification network for MNIST dataset. We use
the same architecture as the encoder part of the auto-encoder
and append a dense layer to it to map the latent space to the
score vector of our 10 digit classes.

MIST classification network for PASCAL+COCO
dataset. We crop patches at keypoint locations on the fea-
ture map from fourth convolution block and feed the patches
into a single ResNet block — same as the one used for the
auto-encoder network — followed by a global average pool-
ing layer, and a dense layer that converts the output into 21
logit values for classification.

C.2. Implementations of compared methods

Baseline unsupervised reconstruction methods. To im-
plement the Esl16 [12] baseline, we use a publicly available
third-party implementation'. We note that their method was
originally applied to a dataset consisting of images of 0, 1,
or 2 digits with equal probability. We found that the model
failed to converge unless it was trained with examples where
various number of total digits exist, so for fair comparison,
we populate the training set with images consisting of all
numbers of digits between 0 and 9. For the Zhal8 [62]
baseline, we use the authors’ implementation and hyperpa-
rameters.

Differentiable top-K (Xie20) [57]. We implemented their
method as a PyTorch module according to the pseudo-code
provided in [57]. In addition to the provided pseudo-code,
we add a small epsilon clipping for the division opera-
tions within the equations for stability. The differentiable

Ihttps://github.com/aakhundov/tf-attend-infer-
repeat

top-K operation in [57] outputs a top-k selection mask
m € (0,1)", where N is number of elements to select
from — top-K elements have a mask score close to 1, and
non selected elements have a mask score close to 0. To
apply this method to our task, one needs to then apply this
mask to the classification results of patches at all heatmap
location, as the operation is not indexing, but rather masking
— this is how differentiability is obtained in this method. It
is therefore necessary that all results that gets masks to stay
in memory, and requires a smaller heatmap to be trained on
reasonable system — we use a GeForce RTX 2080 Ti with
11GB memory. In addition, we modify the classification loss
in Eq.(9) to incorporate the selection mask:

2

; 12)
2

1 & 1
Etask: ZZ}’Z— P Xm

1=1
where L is the number of instances in the image, p is the
C x N classification score matrix, m is the mask vector of
size N, with C being the number of classes. Note that the
only difference here is that the top-K selection via indexing
in the main paper has know been transformed into a mask-
based selection.

=l

D. Non-uniform distributions

Figure 8. Examples with uneven distributions of digits.

Although the images we show in Figure 2 involve small
displacements from a uniformly spaced grid, our method
does not require the keypoints to be evenly spread. As shown
in Figure 8, our method is able to successfully learn even
when the digits are placed unevenly. Note that, as our de-
tector is fully convolutional and local, it does not learn the
absolute location of keypoints. In fact, we weakened the
randomness of the locations for fairness against [62], which
is not designed to deal with severe displacements.

E. Performance on the full PASCAL VOC 2007
dataset with multiple anchors

The curious reader may be intrigued how the method per-
forms when the method is tested on a more unrestricted setup.
While this is out of scope, since introducing new dimensions
such as scale require more than just the classification itself —
one needs to understand the extent of an object — we report
results when four anchors with different scale and aspect
ratio are considered Specifically, we resize the images to

have a shorter edge of 224 pixels to be compatible with the
pre-trained part of the network, and use four anchors each
having the size of 56x56, 56x168, 168x56, 168x168, and
predict confidence scores for each anchor. The final bound-
ing box is a weighted average of the four anchors based on
their confidence scores after a softmax operation.

Even when using the original dataset and introducing
scale estimation our method still outperforms Xie20. In
this case, the localization performance, in terms of the F1
score on the full dataset was 33.8% for our method, and
29.8% for Xie20, both of which are significantly worse than
the simplified task. This is expected, as there is nothing
in the loss functions asking for correct localization — the
task itself is simply image-level classification. We expect
further regularization on how the detection should behave is
necessary for a more practical detection setup, but this is out
of scope of the current paper, and is left as future work.

