
Self-supervised Augmentation Consistency
for Adapting Semantic Segmentation

– Supplemental Material –

Nikita Araslanov1 Stefan Roth1,2

1Department of Computer Science, TU Darmstadt 2 hessian.AI

A. Overview
In this appendix, we first provide further training and

implementation details of our framework. We then take a
closer look at the accuracy of long-tail classes, before and
after adaptation. Next, we discuss our strategy for hyper-
parameter selection and perform a sensitivity analysis. We
also evaluate our framework using another segmentation ar-
chitecture, FCN8s [98]. Finally, we discuss the limitations
of the current evaluation protocol and propose a revision
based on the best practices in the field at large.

B. Further Technical Details
Photometric noise. Recall that our framework uses ran-
dom Gaussian smoothing, greyscaling and colour jittering
to implement the photometric noise. We re-use the parame-
ters for these operations from the MoCo-v2 framework [93].
In detail, the kernel radius for the Gaussian blur is sam-
pled uniformly from the range [0.1, 2.0]. Note that this does
not correspond to the actual filter size.1 The colour jitter,
applied with probability 0.5, implements a perturbation of
the image brightness, contrast and saturation with a factor
sampled uniformly from [0.6, 1.4], while the hue factor is
sampled uniformly at random in the range of [0.9, 1.1]. We
convert a target image to its greyscale version with proba-
bility 0.2. Fig. 6 demonstrates an example implementation
of this procedure in Python.

Constraint-free data augmentation. Similarly to the
multi-scale cropping of the target images, we scale the
source images randomly with a factor sampled uniformly
from [0.5, 1.0] prior to cropping. However, we do not en-
force the semantic consistency for the source data, since the
ground truth of the source images is available. For both
the target and source images we also use random horizontal
flipping. We additionally experimented with moderate rota-
tion (both with and without semantic consistency), but did
not observe a significant effect on the mean accuracy.

1The Pillow Library [94] internally converts the radius r to the box
length as L =

√
3 ∗ r2 + 1.

1 import random
2 import PIL
3 import torchvision.transforms as tf
4 import torchvision.transforms.functional as F
5

6 # Load the image
7 image = PIL.Image.open (...)
8

9 # Gaussian blur
10 # with a randomly sampled radius
11 radius = random.uniform (.1 ,2.)
12 gaussian = PIL.ImageFilter.GaussianBlur(radius)
13 image = image.filter(gaussian)
14

15 # Colour jitter
16 # with probability 0.5
17 if 0.5 > random.random ():
18 jitter = tf.ColorJitter(brightness =0.4,
19 contrast =0.4,
20 saturation =0.4,
21 hue =0.1)
22 image = jitter(image)
23

24 # Convert to greyscale
25 # with probability 0.2
26 if 0.2 > random.random ():
27 image = F.to_grayscale(image)

Figure 6. Python implementation of the photometric noise.

Training schedule. Our framework typically needs 150−
200K iterations in total (i.e. including the source-only pre-
training) until convergence, as determined on a random sub-
set of 500 images from the training set (see our discussion in
Appendix D below). This varies slightly depending on the
backbone and the source data used. This schedule translates
to approximately 3 days of training with standard GPUs
(e.g., Titan X Pascal with 12 GB memory) for both VGG-
16 and ResNet-101 backbones. Recall that we used 4 GPUs
for our ResNet version of the framework, hence its training
time is comparable to the VGG variant, which uses only 2
GPUs. All our experiments use a constant learning rate for
simplicity, but more advanced schedules, such as cyclical
learning rates [35], the cosine schedule [93, 95] or ramp-ups
[40], may further improve the accuracy of our framework.



CBT IS FL road sidew build wall fence pole light sign veg terr sky pers ride car truck bus train moto bicy mIoU

88.1 41.0 85.7 30.8 30.6 33.1 37.0 22.9 86.6 36.8 90.7 67.1 27.1 86.8 34.4 30.4 8.5 7.5 0.0 44.5

3 89.4 52.3 86.0 34.0 32.6 38.5 43.3 30.6 85.2 30.9 88.5 66.7 28.0 85.7 35.6 39.6 0.0 6.6 0.0 46.0
3 90.0 47.1 85.6 31.3 24.9 32.3 38.9 28.2 87.3 39.8 89.4 67.7 28.6 88.1 40.1 50.0 7.3 9.9 2.2 46.8

3 89.3 39.0 85.1 33.2 26.1 32.4 41.8 25.2 86.3 27.4 90.4 66.4 28.2 87.5 32.9 45.4 11.0 7.6 0.0 45.0

3 3 89.3 52.6 86.0 33.4 30.0 38.0 44.9 34.3 86.9 35.3 88.0 65.4 27.3 86.2 37.6 44.0 20.9 9.6 6.5 48.2
3 3 89.3 52.2 86.1 34.2 31.5 37.0 43.4 36.3 85.2 30.7 86.6 66.2 30.3 85.3 36.2 43.9 29.2 6.8 8.6 48.4
3 3 89.7 45.1 85.6 29.6 28.3 31.7 41.9 27.5 87.2 37.4 89.8 66.9 29.2 87.5 37.3 31.6 24.7 11.9 20.2 47.5

3 3 3 90.0 53.1 86.2 33.8 32.7 38.2 46.0 40.3 84.2 26.4 88.4 65.8 28.0 85.6 40.6 52.9 17.3 13.7 23.8 49.9

Table 5. Per-class IoU (%) on Cityscapes val using a VGG-16 backbone in the GTA5 → Cityscapes setting. We study three components
in more detail: class-based thresholding (CBT), importance sampling (IS) and the focal loss (FL). The mIoU of the settings in the last
four rows are reproduced from the main text. Here, we elaborate on the per-class accuracy in a broader context of the supplementary
experiments in the first four rows.

C. Additional Experiments

C.1. A closer look at long-tail adaptation

Recall that our framework features three components to
attune the adaptation process to the long-tail classes: class-
based thresholding (CBT), importance sampling (IS) and
the focal loss (FL), which we summarily refer to as the long-
tail components in the following. Disabling the long-tail
components individually is equivalent to setting β → 0 for
CBT, using uniform sampling of the target images instead
of IS or assigning λ to 0 for the FL. Here, we extend our ab-
lation study of the GTA5→ Cityscapes setup with VGG-16
(cf. Table 4 from the main text) and experiment with dif-
ferent combinations of the long-tail components. Table 5
details the per-class accuracy of the possible compositions.

We observe that the ubiquitous classes – “road”, “build-
ing”, “vegetation”, “sky”, “person” and “car” – are hardly
affected; it is primarily the long-tail categories that change
in accuracy. Furthermore, our long-tail components are mu-
tually complementary. The mean IoU improves when one
of the components is active, from 44.5% to up to 46.8%.
It is boosted further with two of the components enabled
to 48.4%, and reaches its maximum for our model, 49.9%,
when all three components are in place.

We further identify the following tentative patterns. FL
tends to improve classes “wall”, “fence” and “pole”. CBT
increases the accuracy of the “traffic light” category (which
has high image frequency and occupies only a few pixels),
but also rare classes, such as “rider”, “bus” and “train”
benefit from CBT, especially in conjunction with IS. IS
also enhances the mask quality of the classes “bicycle” and
“motorcycle”. Nevertheless, we urge caution against inter-
preting the results for each class in isolation, despite such
widespread practice in the literature. Today’s semantic seg-
mentation models do not possess the notion of an ‘ambigu-
ous’ class prediction and each pixel receives a meaningful
label. By the pigeon’s hole principle, this implies that the
changes in the IoU of one class have an immediate effect

on the IoU of the other classes. Therefore, the benefits of
individual framework components have to be understood in
the context of their aggregated effect on multiple classes,
e.g. using the mean IoU. For instance, consider the class
“train” for which IS appears to also decrease the IoU: while
CBT together with FL achieve 29.2% IoU, adding IS de-
creases the IoU to 17.3%. However, the IoU of other classes
increases (e.g., “motorcycle”, “bicycle”), as does the mean
IoU. Furthermore, only few classes reach their maximum
accuracy when we enable all three long-tail components.
Yet, it is the setting with the best accuracy trade-off be-
tween the individual classes, i.e. with the highest mean IoU.
Overall, the long-tail components improve our framework
by 5.4% mean IoU combined, a substantial margin.

C.2. Hyperparameter search and sensitivity

To select ζ and β, we first experimented with a few rea-
sonable choices (ζ ∈ (0.7, 0.8), β ∈ (0.0001, 0.01))2 using
a more lightweight backbone (MobileNetV2 [97]). To mea-
sure performance, we use the mean IoU on the validation
set (500 images from Cityscapes train, as in the main text).

Here, we study our framework’s sensitivity to the partic-
ular choice of ζ and β. To make the results comparable to
our previous experiments, we use VGG-16 and report the
mean IoU on Cityscapes val in Table 7. We observe mod-
erate deviation of the IoU w.r.t. ζ. A more tangible drop
in accuracy with β = 0.01 is expected, as it leads to low-
confidence predictions, which are likely to be inaccurate, to
be included into the pseudo label. We note that while a sub-
optimal choice of these hyperparameters leads to inferior
results (with a standard deviation of ±1.4% mIoU), even
the weakest model with ζ = 0.8 and β = 0.01 did not fail
to considerably improve over the baseline (by 8.5% IoU, cf.
Table 2 in the main text).

2While ζ may seem more interpretable (the maximum confidence
threshold), a reasonable range for β can be derived from χc for the long-
tail classes, which is simply the fraction of pixels these classes tend to
occupy in the image (see Eq. 3).



Method road sidew build wall fence pole light sign veg terr sky pers ride car truck bus train moto bicy mIoU

GTA5 → Cityscapes

Baseline (ours) 76.7 28.2 74.4 12.7 19.0 27.2 28.7 12.2 77.0 18.0 70.6 54.8 20.6 79.6 19.0 19.2 20.6 27.9 11.2 36.7 (37.1)
SAC-FCN (ours) 86.3 45.6 84.4 30.3 27.1 24.8 42.8 35.2 86.9 39.7 88.0 62.3 32.1 84.1 28.4 43.7 31.9 29.4 45.8 49.9 (49.9)

SYNTHIA → Cityscapes

Baseline (ours) 50.7 23.8 60.9 1.8 0.1 27.7 10.5 15.7 60.1 — 72.4 50.1 16.0 66.5 — 13.7 — 8.5 26.8 31.6 (34.4)
SAC-FCN (ours) 74.7 34.2 81.4 19.8 1.9 27.2 34.8 27.2 80.0 — 86.3 61.5 20.8 82.5 — 31.2 — 32.0 53.9 46.8 (49.1)

Table 6. Per-class IoU (%) on Cityscapes val using VGG-16 with FCN8s. For reference, the numbers in parentheses in the last column
report the mean IoU of the DeepLabv2 architecture (cf. Tables 2 and 3 from the main text).

↓ ζ / β → 0.0001 0.001 0.01

0.7 47.9 48.8 46.7
0.75 48.6 49.9 46.3
0.8 48.2 49.8 45.6

Table 7. Mean IoU (%) on GTA5 → Cityscapes (val) with vary-
ing ζ and β. Our framework maintains strong accuracy under dif-
ferent settings of ζ and β. Even with a poor choice (e.g., ζ = 0.8,
β = 0.01), it fares well w.r.t. the state of the art and outperforms
many previous works (cf. Table 2 from the main text).

C.3. VGG-16 with FCN8s

A number of previous works (e.g., [55, 77, 80]) used
the FCN8s [98] architecture with VGG-16, as opposed to
DeepLabv2 [10], adopted in other works (e.g., [39, 70])
and ours. Such architecture exchange appears to have been
dismissed in previous work as minor, which used only one
of the architectures in the experiments. However, the seg-
mentation architecture alone may contribute to the observed
differences in accuracy of the methods and, more criti-
cally, to the improvements otherwise attributed to other as-
pects of the approach. To facilitate such transparency in
our work, we replace DeepLabv2 with its FCN8s counter-
part in our framework (with the VGG-16 backbone) and
repeat the adaptation experiments from Sec. 4, i.e. using
two source domains, GTA5 and SYNTHIA, and Cityscapes
as the target domain. We keep the values of the hyperpa-
rameters the same, with an exception of the learning rate,
which we increase by a factor of 2 to 5 × 104. Table 6 re-
ports the results of the adaptation, which clearly show that
our framework generalises well to other segmentation archi-
tectures. Despite the FCN8s baseline model (source-only
loss with ABN) achieving a slightly inferior accuracy com-
pared to DeepLabv2 (e.g., 31.6% vs. 34.4% IoU for SYN-
THIA → Cityscapes), our self-supervised training still at-
tains a remarkably high accuracy, 46.8% IoU (vs. 49.1%
with DeepLabv2). This is substantially higher than the pre-
vious best method using FCN8s with the VGG-16 back-
bone, SA-I2I [55]: +3.4% on GTA5 → Cityscapes and
+5.3% on SYNTHIA→ Cityscapes.

D. Towards Best-practice Evaluation
The current strategy to evaluate domain adaptation (DA)

methods for semantic segmentation is to use the ground
truth of 500 randomly selected images from the Cityscapes
train split for model selection and to report the final model
accuracy on the 500 Cityscapes val images [47]. In this
work, we adhered to this procedure to enable a fair compar-
ison to previous work. However, this evaluation approach
is evidently in discord with the established best practice in
machine learning and with the benchmarking practice on
Cityscapes [18], in particular.

The test set is holdout data to be used only for an unbi-
ased performance assessment (e.g., segmentation accuracy)
of the final model [96]. While it is conceivable to consult
the test set for verifying a number of model variants, such
access cannot be unrestrained. This is infeasible to ensure
when the test set annotation is public, as is the case with
Cityscapes val, however. Benchmark websites traditionally
enable a restricted access to the test annotation through im-
partial submission policies (e.g., limited number of submis-
sions per time window and user), and Cityscapes officially
provides one.3

We, therefore, suggest a simple revision of the evalua-
tion protocol for evaluating future DA methods. As before,
we use Cityscapes train as the training data for the target
domain, naturally without the ground truth. For model se-
lection, however, we use Cityscapes val images with the
ground-truth labels. The holdout test set for reporting
the final segmentation accuracy after adaptation becomes
Cityscapes test, with the results obtained via submitting
the predicted segmentation masks to the official Cityscapes
benchmark server.

An additional advantage of this strategy is a clear inter-
pretation of the final accuracy in the context of fully super-
vised methods that routinely use the same evaluation setup.
Also note that Cityscapes val contains images from differ-
ent cities than Cityscapes train (which are also different
from Cityscapes test). Therefore, it is more suitable for de-
tecting cases of model overfitting on particularities of the
city, since the validation set was previously a subset of the

3https://www.cityscapes-dataset.com



Method road sidew build wall fence pole light sign veg terr sky pers ride car truck bus train moto bicy mIoU

GTA5 → Cityscapes

SAC-FCN (ours) 87.5 45.2 85.0 29.2 26.4 23.3 44.2 32.0 88.3 52.6 91.2 65.2 35.0 86.0 24.4 32.8 31.4 36.9 40.5 50.4 (49.9)
SAC-VGG (ours) 91.5 53.9 86.6 34.1 31.5 36.8 47.2 36.9 85.1 38.0 91.1 68.7 31.9 87.4 31.0 46.7 22.6 24.2 24.0 51.0 (49.9)
SAC-ResNet (ours) 91.8 54.3 87.4 36.2 30.2 43.7 49.7 42.1 89.3 54.3 90.5 71.8 34.9 89.8 38.8 47.3 24.9 38.3 43.8 55.7 (53.8)

SYNTHIA → Cityscapes

SAC-FCN (ours) 66.9 25.9 80.8 12.1 2.0 24.4 37.1 27.5 78.8 — 88.9 63.9 25.0 84.7 — 27.4 — 36.9 50.2 45.8 (46.8)
SAC-VGG (ours) 70.4 29.7 83.6 11.6 1.8 34.2 41.2 29.2 81.0 — 87.1 67.9 25.4 75.9 — 34.3 — 42.5 57.5 48.3 (49.1)
SAC-ResNet (ours) 87.4 41.0 85.5 17.5 2.6 40.5 44.7 34.4 87.9 — 91.2 68.0 31.0 89.3 — 33.2 — 38.6 49.9 52.7 (52.6)

Fully supervised (Cityscapes)

DeepLab-ResNet [10] 97.9 81.3 90.4 48.8 47.4 49.6 57.9 67.3 91.9 69.4 94.2 79.8 59.8 93.7 56.5 67.5 57.5 57.7 68.8 70.4
FCN-VGG [98] 97.4 78.4 89.2 34.9 44.2 47.4 60.1 65.0 91.4 69.3 93.9 77.1 51.4 92.6 35.3 48.6 46.5 51.6 66.8 65.3

Table 8. Per-class IoU (%) on Cityscapes test. In the last column, the numbers in parentheses report the mean IoU on Cityscapes val
from the previous evaluation scheme (cf. Tables 2 and 3 from the main text) for reference. SAC-FCN denotes our VGG-based model with
FCN8s [98] from Appendix C.3.

training images.
For future reference, we evaluate our framework (both

the DeepLabv2 and FCN8s variants) in the proposed setup
and report the results in Table 8. To ease the comparison,
we juxtapose our validation results reported in the main
text (from Table 6 for FCN8s).4 As we did not finetune
our method to Cityscapes val following the previous eval-
uation protocol, we expect the test accuracy on Cityscapes
test to be on a par with our previously reported accuracy
on Cityscapes val. The results in Table 8 clearly confirm
this expectation: the segmentation accuracy on Cityscapes
test is comparable to the accuracy on Cityscapes val (SYN-
THIA → Cityscapes) or even tangibly higher (GTA5 →
Cityscapes). We remark that the remaining accuracy gap
to the fully supervised model is still considerable (70.4%
vs. 55.7% IoU achieved by our best DeepLabv2 model and
65.3% vs. 51.0% IoU compared to our best FCN8s variant),
which invites further effort from the research community.

We hope that future UDA methods for semantic segmen-
tation will follow suit in reporting the results on Cityscapes
test. Owing to the regulated access to the test set, we be-

4To our best knowledge, no previous work published their results in
this evaluation setting before.

lieve this setting to offer more transparency and fairness to
the benchmarking process, and will successfully drive the
progress of UDA for semantic segmentation, as it has done
in the past for the fully supervised methods.

References

[93] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv:2003.04297 [cs.CV], 2020. 1

[94] Alex Clark. Pillow (PIL fork) documentation, 2015. 1

[95] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-
ent descent with warm restarts. In ICLR, 2017. 1

[96] Brian D. Ripley. Pattern Recognition and Neural Networks.
Cambridge University Press, 1996. 3

[97] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. MobileNetV2: Inverted
residuals and linear bottlenecks. In CVPR, pages 4510–4520,
2018. 2

[98] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. IEEE
Trans. Pattern Anal. Mach. Intell., 39(4):640–651, 2017. 1,
3, 4


