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(Supplementary Material)

A. Geometric consistency
We provide a qualitative evaluation of the geometric con-

sistency of depth maps predicted by our model. Surface nor-
mal maps provide a good way to visualize the orientation
and texture details of surfaces present in the scene. Fig F.1
shows the visualization of the normals extracted from the
depth maps for our model and for DAV [2] and BTS [3]. Al-
though the orientations predicted by DAV seems to be con-
sistent, the texture details are almost completely lost. BTS,
on the other hand, preserves the texture but sometimes re-
sults in erroneous orientation details. Our method exhibits
detailed texture and consistent orientations without explic-
itly imposing geometric constraints, such as co-planarity,
used by other methods [2, 3].

B. Generlization analysis
Here we qualitatively analyze the capability of our

method to generalise to unseen data. We use the models
(AdaBins and BTS [3]) trained on NYU-Depth-v2 [4] but
show predictions on SUN RGB-D [5] dataset in Fig F.2.
Depth maps predicted by BTS have conspicuous artifacts
whereas our method provides consistent results on the un-
seen data.

C. More results on KITTI
Fig F.3 shows a qualitative comparison of BTS [3] and

our method on the KITTI dataset. For better visualization,
we have removed the sky regions from the visualized depth
maps using segmentation masks predicted by a pretrained
segmentation model [1]. We can observe that our method
demonstrates superior performance particularly in predict-
ing extents and edges of the on-road vehicles, sign-boards
and thin poles. Additionally, BTS tends to blend the far-
ther away objects with the background whereas our method
preserves the structure with clear separation.

D. MLP head details
We use a three-layer MLP on the first output embedding

of the transformer in the mini-ViT module. The architecture
details and the parameters used are given in Table D.1.

Layer Input dimension Output dimension Activation

FC E 256
LeakyReLU
(negative slope=0.01)

FC 256 256
LeakyReLU
(negative slope=0.01)

FC 256 N -

Table D.1: Architecture details of MLP head. FC: Fully
Connected layer, E: Embedding dimension, N: Number of
bins.

Variant δ1↑ δ2↑ δ3 ↑ REL ↓ RMS ↓
Base + R 0.881 0.980 0.996 0.111 0.419
Base + Uniform-Fix-HR 0.892 0.981 0.995 0.107 0.383
Base + Log-Fix-HR 0.896 0.981 0.995 0.108 0.379
Base + Train-Fix-HR 0.893 0.981 0.995 0.109 0.381
Base + AdaBins-HR 0.903 0.984 0.997 0.103 0.364

1. mViT @ bottleneck 0.885 0.980 0.996 0.110 0.416
2. −mViT + GPool 0.896 0.983 0.996 0.107 0.370
3. mViT only (− adaptive bins) 0.892 0.982 0.995 0.108 0.386

Table E.1: Comparison of different variants.

E. Additional ablation
In order to further demonstrate the importance of vari-

ous components used in our final design, we design other
variants of the AdaBins architecture and study their perfor-
mance. These variants are listed as follows:

1. mViT at the bottleneck. In Section 3.3 of the
main text, we postulated that global attention at high-
resolution is the key to effectively predict the adaptive
bin centers. We verify this by moving the mViT block
to the bottleneck of the encoder-decoder architecture
and study the performance. Note that here we set patch
size, P = 1.

2. Adaptive bins via global pooling. In this design, we
study the contribution of mViT module. Specifically,
we remove the mViT block and predict the adaptive bin
centers using Global Pooling on the decoder features
followed by an MLP.

3. mViT only. Here, we use the encoder-decoder archi-

1



tecture followed by mViT without the adaptive bins
head. This architecture is equivalent to “Base + mViT
+ Uniform-Fix-HR” according to nomenclature de-
fined in Table 6 in the main paper.

Performances of the above listed variants trained on NYU-
Depth-v2 dataset are listed in Table E.1. We repeat Table
6 of the main paper here for convenience. We can observe
that using the mViT module at the bottleneck deteriorates
the performance. Furthermore, it can be observed from Ta-
ble E.1 that the order of importance of the components in
our final AdaBins architecture is :

global processing > adaptive bins > ViT

This validates our hypothesis that global attention at high-
resolution is an important factor and adaptive bins is the
main component leading to the state-of-the-art performance
of our AdaBins design.
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RGB DAV [2] BTS [3] Ours

Figure F.1: Visualization of surface normals extracted from predicted depth maps.
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RGB BTS [3] Ours GT

Figure F.2: Qualitative comparison of generalization from NYU-Depth-v2 to SUN RGB-D dataset. Darker pixels are farther.
Missing ground truth values are shown in white.
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RGB BTS [3] Ours

Figure F.3: Qualitative comparison on KITTI dataset.
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