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A. Behavior Model
A.1. Training and Implementation Details

Behavior model Most of the implementation details of
our behavior model are already described in the main paper
in Sec. 4. We train our model on a single Titan Xp using
ADAM [5] optimizer with learning rate 0.0001 which is
decreased after 10, 25 and 35 epochs. For data preprocessing,
we normalize the posture keypoints to have zero mean and
unit variance.

Invertible Transformation Tξ To highlight the need for
learning an explicit mapping between the prior p(zβ) and
the posterior q(zβ |x, xt), we plot in Fig. 1 2D UMAP [11]
visualizations of samples drawn from these distributions
without and with using Tξ. Fig. 1 (a) shows a clear mis-
match between both distributions. Fig. 1 (b) demonstrates
that applying the transformation Tξ helps to align prior and
posterior, which is also reflected by the results discussed in
the paragraph ’Behavior Sampling’.
Our normalizing flow model Tξ is implemented as a stacked
sequence of 15 invertible neural networks based on an input
dimensionality of D = 1024. Each consists of 3 blocks of
subsequently applied actnorm [6], affine coupling layers [2]
and shuffling layers. The affine coupling layers consist of 2
fully connected layers with dimensionality D = 1024. We
trained the normalizing flow model on a single Titan Xp for

*Indicates equal contribution

5 epochs with batchsize 64 and ADAM [5] optimizer with
learning rate 6.5× 10−6.

A.2. Protocols of Ablation Studies

Sample-Reality Classifier In Fig. 4 (b) of our main paper,
we evaluate the quality of our generations with a recurrent
binary classifier similar to [1]. The task of the classifier is to
distinguish between 25k samples ground-truth sequences and
25k synthesized generations based on samples from the prior
distribution. The classifier consists of a single layer GRU
network with 256 hidden dimension for feature extraction,
followed by a fully connected layer before applying the
sigmoid function for binary classification. We optimize the
classifier via stochastic gradient descent for 2k iterations,
with a batch size of 256, a learning rate of 0.001 and a
momentum of 0.9.

Average Regression Error (RE) In Tab. 1 of our main
paper we provide an explicit quantitative evaluation of the
disentanglement of posture and behavior. We adopt the ex-
periments of [10] and train a Multi-Layer Perceptron (MLP)
consisting of 3 linear layers with 512, 256 and 51 neurons
to predict the keypoint locations of postures in sequence
xβ at different time-steps T based on their corresponding
extracted behavior representation zβ . Therefore, we train the
MLP for 20 epochs with Adam [5] optimizer and a learning
rate of 1×10−3 on the test set as described in the main paper.
Intuitively, if zβ captures no information about posture, RE
is high and converges to 0 is lots of posture information is
captured.

Action Classifier In Sec. 4 of our main paper we evalu-
ate the informativeness of the behavior representation zβ by
means of their benefit as a feature representation for action
classification on Human3.6M dataset [4] (acc. values of the
evaluated models in Tab. 1). For this purpose, we directly
train a linear classifier on top of the frozen behavior encoder.
For training and evaluation we use the same train-test split
as described in the main paper. For the validation classi-
fier which results in an test accuracy of 45% (’gt:0.45’, Tab.
1, main paper), we train a classifier with trainable feature
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Figure 1. 2D-UMAP of prior and posterior samples without (a) and with (b) learning the normalizing flow transformation Tξ for distribution
alignment.

representation which has the same architecture as our behav-
ior encoder qφ(zβ |x, xt) to predict the action labels from
ground truth sequences of 50 frames.

A.3. Additional Results

Subsequently, we show additional visual results depicted
as figures in this manuscript or as videos in the folder

’videos’.

Behavior Transfer We show more examples of behavior
transfer in Fig. 2-7, both as postures and RGB images,
similar to Fig. 3 of our main paper to further demonstrate
the effectiveness of our approach. Moreover, we also show
videos based on both our model and the cAE/cVAE models
which we quantitatively evaluated in Sec. 4 (Quantitative
evaluation).

(i) cAE: The video ’behavior transfer CAE.mp4’ shows
behavior re-enactments based on the cAE model. The
topmost row depicts the source behavior sequence xβ ,
while the leftmost column shows different target postures
xt. Based on these we show all pairwise combinations. We
see that in general the cAE model quickly warps from xt to
some early posture of xβ . Next, it almost exactly copies the
remaining posture sequence xβ . Thus, given a certain xβ
each re-enacted sequence is identical and independent of
the given target pose xt, rather than transferring only the
behavior dynamics to the observed target postures. This is
explained by the missing disentanglement of posture and
behavior, which allows the cAE model to fully capture the

complete posture information of xβ in zβ .

(ii) cVAE: The video ’behavior transfer CVAE.mp4’
shows behavior re-enactments based on the cVAE model.
The topmost row depicts the source behavior sequence xβ ,
while the leftmost column shows different target postures
xt. Based on these we show all pairwise combinations. We
observe that this model predicts a likely future continuation
based on the target posture xt, thus not using the behavior
representation zβ for additional, dedicated information
describing the source sequence xβ . This is explained by
posterior collapse, i.e. mean and variance of qφ(zβ |x, xt)
collapsing to almost constant values.

(iii) Ours: The videos ’behavior transfer1.mp4’ and
’behavior transfer2.mp4’ show behavior re-enactments
based on our proposed behavior transfer model. In both
videos, the topmost row depicts the source behavior
sequence xβ , while the leftmost column shows different
target postures xt. Based on these we show all pairwise
combinations. We see that our model extracts the be-
havior dynamics from diverse source sequences xβ and
successfully transfers them to arbitrary target postures
xt resulting in meaningful re-enactments of behavior β.
Moreover, ’behavior transfer1 RGB.mp4’ and ’behav-
ior transfer2 RGB.mp4’ show RGB video syntheses of our
results using our model for posture-appearance transfer (see
Appendix B and main paper).



Behavior Sampling We now compare syntheses of novel
behavior based on samples zβ drawn from the prior distribu-
tion p(zβ), with and without using the transformation Tξ for
correcting the mismatch with the posterior qφ(zβ |x, xt). For
this purpose, we recursively synthesize behavior using sam-
pled behavior representations zβ and the last posture of the
previously generated posture sequence. For detailed compar-
ison, we show such a concatenated posture sequence without
using Tξ in video ’sample loop prior.mp4’ and with Tξ in

’sample loop flow.mp4’. We observe that the first suffers
from synthesis artifacts due to out-of-distribution samples
zβ , which in particularly become evident at the beginning of
each behavior synthesis. In contrast, the recursively gener-
ated sequence using transformation Tξ does not exhibit such
artifacts and consequently results in a much smoother and
more realistic sequence of diverse human behavior.
Moreover in video ’samples.mp4’ we show behavior synthe-
sis based on random sampling zβ from the prior distribution
which are then transformed using Tξ. The leftmost column
depicts the target postures xt with each performing 6 ran-
domly sampled behaviors. Note, that for each target posture
xt we use different samples zβ .

Behavior Nearest Neighbors To also demonstrate visu-
ally that our learned representation zβ actually captures
behavior dynamics while discarding posture information,
we find nearest neighbours to the ground-truth training se-
quences. Therefore, we re-enact a source behavior xβ us-
ing a random target posture xt. Next, we find its nearest
neighbour in the training sequences based on (i) distance
between behavior representations zβ and (ii) average dis-
tances between postures sequences (based on alignment w.r.t.
the pelvis keypoints). The video ’nearest neighbors.mp4’
shows our results: Each column depicts a separate example
showing the ’Source Behavior’, the ’Nearest Neighbor based
on Behavior representation’, the ’Behavior Re-enactment
of Source Behavior’ and the ’Nearest Neighbor based on
Posture’, i.e. average posture distance. We observe that
while there exist close training sequences in terms of posture,
the nearest neighbors based on zβ show similar behavior
dynamics while being dissimilar in posture.

Behavior Interpolation To further analyze the regular-
ity of our behavior representation zβ , we interpolate be-
tween the behavior observed in two sequences x1

β and
x2
β . To this end, we first extract their corresponding be-

havior representations z1β , z
2
β and interpolate between them

at equidistant steps, i.e. (1 − λ) · z1β + λ · z2β ; λ ∈
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Next, we generate a sequence
of interpolated behavior using our decoder pθ(x|zβ , xt) with
xt being the first frame of x1

β , respectively x2
β . Note, that for

λ ∈ {0, 1.0} we basically reconstruct the source sequences

x1
β , x2

β . We show the resulting posture sequences in ’inter-
polations 01.mp4’-’interpolations 03.mp4’ and with addi-
tional RGB image overlay in ’interpolations rgb 01.mp4’-

’interpolations rgb 03.mp4’.

Behavior Generalization We now demonstrate the robust-
ness of our proposed model to unseen behavior dynamics
by leaving out sets of entire classes during training1 and,
subsequently, performing behavior transfers based on source
sequences xβ sampled from these classes.
We show results for both excluding walking actions (’walk-
ing’, ’walking dog’, ’walking together’) in video ’behav-
ior transfer generalization walking.mp4’ and sitting actions
(’sitting’, ’sitting down’, ’purchases’) in video ’behav-
ior transfer generalization sitting.mp4’. The top rows de-
pict the source behaviors xβ and the leftmost columns show
the target postures xt. In both cases our model is able to cor-
rectly infer the body dynamics characterizing these actions.

B. Posture and Appearance Model
Our proposed conditional framework for disentanglement

can also be applied for the task of appearance transfer. In-
stead of disentangling posture from behavior, we disentangle
posture from appearance of persons depicted on static im-
ages and use the resulting model to generate RGB video
sequences based on the re-enacted posture sequences as
reported in the main paper. Note that the posture and appear-
ance model operates on 2D keypoints. Therefore, we project
the 3D keypoints locations of the re-enacted sequences onto
the image plane. Subsequently, we provide implementation
details and additional experiments on DeepFashion [7] and
Market1501 [15] datasets.

B.1. Architecture and Losses

Our model for appearance transfer is based on a UNet
architecture similar to VUnet [3]. The UNet maps from
posture xt, i.e. keypoint skeletons, to RGB images with
appearance information added at the bottleneck which is
extracted from some image Iα by an appearance encoder.
Now, we provide implementation details for the posture- and
appearance encoder, as well as the decoder.

Appearance encoder: The appearance encoder, which is
the equivalent of the behavior encoder for the task of posture-
appearance disentanglement, is implemented as a fully con-
volutional network. We gradually downsample the input
image Iα up to a spatial size of 4 × 4. Each downsam-
pling stage consists of 2 ResNet blocks and downsampling
is performed using a convolutional layer with stride 2. We
double the number of feature channels at every stage up to

1Note, that we only use labels for excluding training sequences in this
experiment, but not for the training procedure itself.



Method DeepFashion Market1501
IS SSIM IS SSIM

VUnet (Esser et al. 2018) 3.09 0.79 3.21 0.35
DIG [9] 3.23 0.61 3.44 0.10
PG2 [8] 3.09 0.76 3.46 0.25
Ours 3.08 0.80 3.16 0.35

Table 1. Evaluation of our shape-appearance transfer model based
on image quality metrics on DeepFashion [7] and Market1501 [15]
(Reconstruction Setting).

a maximum number of 128 which is then kept fixed. At the
bottleneck we compute mean and variance both based on the
layer outputs of spatial size 8 and 4 [3].

UNet encoder and decoder : Both the encoder and de-
coder branch of the UNet are similarly designed as the ap-
pearance encoder with skip connections connecting them at
each stage. For upsampling in the decoder we use bilinear
interpolation. At the bottleneck, we concatenate the fea-
ture maps of the posture stream with the encodings of the
appearance encoder.

Auxilliary decoder: The auxilliary decoder consists of
two convolutional layers with kernel size 8 and 4. It takes
the appearance encodings as input (both at spatial sizes 8 and
4) and outputs one vector for each with dimensionality 256.
Following that, we add 6 linear layers (with dimenionalities
512,512,256,128,64,34) to predict the posture keypoints.

Optimization: For optimizing the likelihood
Eqφ(x|zα, xt) similar to Eq. (5), with zα denoting
the appearance encoding, we employ both standard
pixel-wise mean squared error and a perceptual loss [3]. The
latter is a feature matching loss and often used to emphasize
on structural information such as contours and texture. It is
formulated as

Lα,feat =
∑
k

λk · ‖Fk(Iα)− Fk(Ĩα)‖1 (1)

where Fk denote feature layers of a pretrained VGG19 net-
work [13], the weights λk control the amount contribution
of each layer k, Iα is the target image to be reconstructed
and Ĩα its reconstruction, i.e. output of the decoder. Note
that the model does not require image pairs of persons with
the same appearance label and can hence be trained solely
by reconstructing static image frames.

B.2. Training Details

Human3.6m On Human3.6M, we train our appearance
model for 150k iterations using ADAM optimizer [5] with
learning rate 0.0005. During the alternating optimization,

we perform 5 update steps of the auxiliary decoder for
each update step of the appearance model. Further, we
set IKL = 1000, γC = 1, λk = 1 ∀ k and use no inplane
normalization [3].

DeepFashion On DeepFashion [7], we train our appear-
ance model for 200k iterations using ADAM optimizer [5]
with learning rate 0.0005. During the alternating optimiza-
tion, we perform 10 update steps of the auxiliary decoder for
each update step of the appearance model. Further, we set
IKL = 1000, γC = 5, λk = 1∀ k and use inplane normaliza-
tion [3].

Market On Market [15], we train our appearance model
for 150k iterations using ADAM optimizer [5] with learning
rate 0.0005. During the alternating optimization, we perform
5 update steps of the auxiliary decoder for each update step
of the appearance model. Further, we set IKL = 1000, γC =
1, λk = 1∀ k and use inplane normalization [3].

B.3. Additional Results

To evaluate our model for appearance transfer also on
established datasets dedicated to this task, we report in
Fig. 1 Inception Score (IS) [12] and Structured Similar-
ity (SSIM) [14] on DeepFashion [7] and Market1501 [15]
dataset. We observe that our model performs competitively
with the state-of-the-art on human shape-appearance transfer,
thus indicating the general applicability of our disentangle-
ment framework. Moreover, in Fig. 8 we provide example
appearance transfers. Top rows depict the target posture and
leftmost columns depict the source appearance. Similarly, in
Fig. 9 we show transfers between posture and appearance
for the Market1501 [15] dataset.
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Figure 2. Behavior Transfer on Human3.6m [4]. We transfer fine-grained, characteristic body dynamics of an observed behavior xβ to
unrelated, significantly different target postures xt. Best viewed in PDF when zoomed in.



Figure 3. Translation of Fig. 2 to RGB images. We transfer fine-grained, characteristic body dynamics of an observed behavior xβ to
unrelated, significantly different target postures xt. Best viewed in PDF when zoomed in.
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Figure 4. Behavior Transfer on Human3.6m [4]. We transfer fine-grained, characteristic body dynamics of an observed behavior xβ to
unrelated, significantly different target postures xt. Best viewed in PDF when zoomed in.



Figure 5. Translation of Fig. 4 to RGB images. We transfer fine-grained, characteristic body dynamics of an observed behavior xβ to
unrelated, significantly different target postures xt. Best viewed in PDF when zoomed in.
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Figure 6. Behavior Transfer on Human3.6m [4]. We transfer fine-grained, characteristic body dynamics of an observed behavior xβ to
unrelated, significantly different target postures xt. Best viewed in PDF when zoomed in.



Figure 7. Translation of Fig. 6 to RGB images. We transfer fine-grained, characteristic body dynamics of an observed behavior xβ to
unrelated, significantly different target postures xt. Best viewed in PDF when zoomed in.



Figure 8. Posture-Appearance transfer on DeepFashion [7]. Top row depicts target posture and leftmost row depicts source appearance.



Figure 9. Posture-Appearance transfer on Market1501 [15]. Top row depicts target posture and leftmost row depicts source appearance.
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