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A. WCoRD Algorithm
The detailed implementation of the proposed Wasserstein

Contrastive Representation Distillation (WCoRD) method is
summarized in Algorithm 1.

Algorithm 1 The proposed WCoRD Algorithm.

1: Input: A mini-batch of data samples {xi, yi}ni=1.
2: Extract features hT and hS from the teacher and student

networks, respectively.
3: Construct a memory buffer B to store previous computed

features.
4: Global contrastive knowledge transfer:
5: Max. the GCKT loss in Eqn. (11) over θS and φ.
6: Local contrastive knowledge transfer:
7: Min. the LCKT loss in Eqn. (13) over θS .
8: Min. the task-specific loss over θS .

B. Baseline Methods and Model Architectures
B.1. Baseline Methods

We compare WCoRD with a number of baseline distilla-
tion methods, detailed below.

• Fitnets: Hints for thin deep nets [11];

• Knowledge Distillation (KD) [5];

• Attention Transfer (AT) [19];

• Like what you like: Knowledge distilllation via neuron
selectivity transfer (NST) [6];

• A gift from knowledge distillation: fast optimization,
network minimization and transfer learning (FSP) [18];

• Learning deep representations with probabilistic knowl-
edge transfer (PKT) [9];

• Paraphrasing complex network: network compression
via factor transfer (FT) [7];

*Equal contribution

• Similarity-preserving knowledge distillation (SP) [17];

• Correlation congruence (CC) [10];

• Variational information distillation for knowledge trans-
fer (VID) [1];

• Relational knowledge distillation (RKD) [8];

• Knowledge transfer via distillation of activation bound-
aries formed by hidden neurons (AB) [4];

• Contrastive representation distillation (CRD) [16] via
NCE [2].

Note that the hyper-parameter setup for these baseline meth-
ods follows the setup in CRD [16].

B.2. Model Architectures

In experiments, we utilize the following model architec-
tures.

• Wide Residual Network (WRN) [20]: WRN-d-w repre-
sents wide ResNet with depth d and width factor w.

• resnet [3]: We use ResNet-d to represent CIFAR-style
resnet with 3 groups of basic blocks, each with 16,
32, and 64 channels, respectively. In our experiments,
resnet8x4 and resnet32x4 indicate a 4 times wider net-
work (namely, with 64, 128, and 256 channels for each
of the blocks).

• ResNet [3]: ResNet-d represents ImageNet-style
ResNet with bottleneck blocks and more channels.

• MobileNetV2 [12]: In our experiments, we use a width
multiplier of 0.5.

• vgg [13]: The vgg networks used in our experiments
are adapted from their original ImageNet counterpart.

• ShuffleNetV1 [21], ShuffleNetV2 [15]: ShuffleNets are
proposed for efficient training and we adapt them to
input of size 32x32.

• InceptionNet-v3 [14] is used for the teacher network in
the priviledge distillation experiment.
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Teacher
Student

WRN-40-2
WRN-16-2

WRN-40-2
WRN-40-1

resnet56
resnet20

resnet110
resnet20

resnet110
resnet32

resnet32x4
resnet8x4

vgg13
vgg8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

CRD 75.48 ± 0.09 74.14 ± 0.22 71.16 ± 0.17 71.46 ± 0.09 73.48 ± 0.13 75.51 ± 0.18 73.94 ± 0.22
CRD+KD 75.64 ± 0.21 74.38 ± 0.11 71.63 ± 0.15 71.56 ± 0.16 73.75 ± 0.24 75.46 ± 0.25 74.29 ± 0.12
WCoRD 75.88± 0.07 74.73 ± 0.17 71.56 ± 0.13 71.57 ± 0.09 73.81± 0.11 75.95 ± 0.11 74.55± 0.18
WCoRD+KD 76.11 ± 0.15 74.72± 0.14 71.92± 0.17 71.88± 0.15 74.20± 0.20 76.15± 0.14 74.72± 0.13

Table 1: Results with standard deviation of both the CRD and WCoRD methods.

λ1 0 0.05 0.07 0.1 0.15 0.2 0.5 0.8 1.0

Result 79.12 80.11 82.15 83.50 83.33 83.78 84.2 84.5 84.3

Table 2: AUC (%) of student network ResNet-8x4 with different λ1 values on the GCKT term.

C. Additional Results
In Table 1, we report additional results of the baseline dis-

tillation methods when combined with KD, and the standard
deviation of the results of both CRD and WCoRD, with or
without KD. Our method achieves better performance.

We also tested the importance of the GCKT module in
WCoRD. We fixed the LCKT module by choosing λ2 = 0.1,
and then we adjust λ1 from 0 to 1.0. Results are summa-
rized in Table 2. Our model is fairly robust towards different
choices of λ1. Also, without the help of the GCKT mod-
ule, models only with LCKT cannot obtain a very good
performance.
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