Supplementary Material of Optimal Gradient Checkpoint Search for Arbitrary
Computation Graphs

Jianwei Feng, Dong Huang
Robotics Institute, Carnegie Mellon University
Pittsburgh, PA 15213
jfengl @andrew.cmu.edu, donghuang @cmu.edu

1. Extra Examples

1.1. Extra Examples for Linear Computation
Graph

Re-forward Re-forward

O D———)
NNV S
Figure 1: Example linear network for gradient checkpoint

training. Letter denotes index of vertex and green vertices
denotes gradient checkpoints.

Fig. 1 is an example linear network for gradient check-
point training. Vertices v;, v;, vy, are stored in the first for-
ward. During backward from vy, to v;, a local forward is
conducted starting from v; to recompute v, and vg. During
backward from v; to v;, v; is recomputed from v;. The re-
computed vertices are used to compute gradients for back-
ward.

Re-forward Re-forward

(O —()—()—()—()—(»)
NNV S
Figure 2: Example of memory cost function for Linear

Computation Graph. Number in the vertex denotes its mem-
ory cost, and green vertices denotes gradient checkpoints.

Fig. 2 explains how we compute memory loss on the lin-
ear computation graph with gradient checkpoint training.
Recall that the loss function is as follows:

min(y | H(vf) +maxi(vf’,vii,), (1)

In Fig. 2, V® is the GCs set (green vertices). >, [(vf?) is
simply the sum of loss of these stored vertices: 10+9+10 =
29. maxI(vf, vl |)) describes the maximum re-forward

loss. In this example, there are two local re-forwarding.

Loss for the second re-forward: 6 + 7 = 13. Loss for the
first re-forward is 8. For each re-forwarding, the loss of it
is simply the sum of all the vertices in between. Therefore,
maximal Re-forward loss is max{13,8} = 13, and total
Loss is 29 + 13 = 42.

o y—(5)

o —(5)
N AN/

7 10
-/

Figure 3: Denote C' = max[(vff,vf). Given C' = 8, this
is an example of Accessibility Graph. Number in the vertex

denotes its loss. The red edges are newly added accessibility
edges in the accessibility graph.

Fig. 3 shows an example of accessibility graph. Given
a certain C' = miaxl (vff, v |), in the accessibility graph,
two vertex have accessibility edge as long as their Re-
forwarding loss is not greater than C. For example, the first
vertex (loss 10) and the third vertex (loss 9) has accessibility

edge because the re-forwarding loss (8) is not greater than
C

1.2. Extra Examples for Arbitrary Computation
Graph

Figure 4: Example of gradient checkpointing for non-linear
computation graph. Letter denotes vertex index, number
denotes vertex memory cost and green vertices denote gra-
dient checkpoints. The edges in the right graph are folded
Independent Segment in the left graph.

Fig. 4 shows an example of gradient checkpoint train-

ing for a non-linear computation graph. Suppose we se-
lect vertices {v;, vy, vy, v;} as gradient checkpoints. Based
on the gradient checkpoints, the computation graph has IS
{Siks Sit, Skt, Skj, Stj 1. If we view these IS as edges and
fold the details within IS, we will get another ACG shown
in the right of Fig. 4, where the vertices are GCs and the
edges are IS in the original graph . During the first for-
ward, only GCs {v;, vy, v, v;} are stored. Re-forwarding
and backward are conducted independently in each IS.

2. Proof
2.1. Definitions and Lemmas

Definition 1. Independent Segment(IS): An IS s;; =
(VU E9)) satisfies the following three properties: 1. All
the vertices in V¥ have a common ancestor v; and a com-
mon descendent v;; 2. Denote the set of edges between two
arbitrary vertices in V¥ is E', the edge from v; to v; (if
exists) as e;j. E must either be E' or E' — {e;;}; 3. An
arbitrary v, € (V% — {v;,v;}) doesn’t have edge with an-
other arbitrary v; ¢ V. For multiple valid IS between v;
and v;, we denote the largest one as s;;

Definition 1 is to clarify properties of IS in maths for the
following proof.

Definition 2. [s.) = (Vi3 — {v;}, B¥). (5] = (VI -
{vi}, EY). (s45) = (V7 = {vi,v;}, EY).

For convenience, we define notations for IS s;; exclud-
ing v;, or v; or both.

Lemma 1. If (s;j) N (skt) # 0 and (si;) ¢ (sgt) and
(skt) & (si5), then (si5) O (ske) = (sks) or (si) N (ske) =

(sit)

Proof. Let s;; N sp = Spq = {VP4, EP1}. If v, # v; and
vp # vy and vy # v; and vy # vy, then v;, vy, has path to
vp and v;, vy has path from v,. Therefore, v, has at least
2 immediate parents v, vy With v, € 8i5,Vq & Skt, Vb €
Ske, Uy & si4. If so, the independence of s;; and sy is vio-
lated. Therefore, v, must be v; or vy.

Same on vg, v, must be v; or v;.

If v, = v3,v4 = vy, then 845 C spe. f vy = Vi, Vg = vy,
then sp; C s;;. Therefore, v, = v;,v4 = vy or v, =
Uk, Vg = Vj. Suppose v, = v,V = vj, let’s prove s, is
an IS.

With spq C Sk, YU1 € (8pg), v1 has no edge with vy &
(skt). With spq C 55, Vo1 € (Spq), v1 has no edge with
vo & (si;). Therefore, Yv1 € (spq), v1 has no edge with
Vg & Spq. The independence of s, is guaranteed.

In the discussion before, we can see the source vertex v,
of s, must be either v; or vi. If v; and vy, are both the
source vertices of s,4, then v; € si; and vi, € s;5, v; has
path to vi and vy, has path to v;, which will force v; = vy

because the s;;, s is acyclic. Same on vy, s, can only

have 1 source vertex and 1 target vertex. Therefore, s, is
an IS.

Therefore, (s;;) N (sk) = (Sk;) or (8i5) N (Ske) = (Sit)-

O

Lemma 2. The intersection of IS spq = Sij N S # 0 is
also an IS

Proof. Given the independence of s;; and sy, the indepen-
dence of s, is obvious. The remaining thing is whether s,
only has 1 source vertex and 1 target vertex. In the proof
of Lemma 1, we can see any source or target vertex of s,
will eventually become source or target vertex of s;; and
Sk¢. With simple discussion, we can have this lemma. [

Lemma 3. If 5;; N sy = S # 0, then vy, is the linear
splitting vertex of s;; and v; is the linear splitting vertex of
Skt

Proof. Let’s first prove that vy, is the linear splitting vertex
of Sij-

Let s, = S;j — Sk;j + {vk}. Obviously, s;; = s, U sk
and s;, N si; = {vx}. We only need to prove that sy, is IS.

v; is obviously the only source vertex of s;; because v;
is source vertex of s;;. We discuss the target vertex here. If
Vi, 1s not the target vertex of s;x, as vx € s, vy must have
path to the target vertex v of s;; and v also has path to v;
as v € s;j. Because v ¢ sy, in the path from v to v;, there
exists an edge that connects a vertex v; € s;; with a vertex
v9 € Sk Which violates the independence of sj;. Therefore,
the target vertex of s;; can only be vy.

As s, C [si5), Vo1 € s, v1 has no edge with vy ¢
[sij). As sgjis IS, Vo € (s;1), v1 has no edge with vy €
(skj). Yv1 € (Sik), v1 can only have edge with vy € s;p.
Thus the independence of s;, is guaranteed. Therefore, s;,
is IS, vy, is the linear splitting vertex of s;;.

Similarly, v; is the splitting vertex of sy O

Lemma 4. If s;; has n splitting vertices {vi,va, ..., Un},
then s;; = 551 U 812 U ... U 8y

Proof. If n = 2, the splitting vertices are vy, V2, 8;5 = 831 U
815 = Si2 U Sg;. Let v1 € 542,01 75 Vs, then S15 M 82 =
s12 # (). According to Lemma 3, v; is linear splitting vertex
of s;5 and vy is linear splitting vertex of si;. Therefore,
Sij = Sil Usio U 52;-
Forn > 2, the lemma can be proved by repetitively using
the conclusion in n = 2.
L]

Lemma 5. If the Complicate IS s;; has division {s,,}, and
{spgtl > 2, denote {v} as all the connecting vertices of
s € {spq}. Then Vv € {v},v # v;,v}, v is the connecting
vertex of at least 3 member IS of the division.

Proof. If vy is the connecting vertex of only 2 member IS,
suppose the 2 members are s, and Spe. If S0, sqp and sp.
can be merged into sq.. If s4c # 55, this violates the def-
inition of divison of Complicate IS. Otherwise, it violates
the condition that s;; is not a Branch IS and [{s,q}| > 2.
It is impossible that the 2 members are s,; and s.;, because
in this way v, has no path to v; and violates the definition
of IS. If vy, is the connecting vertex of only 1 member IS of
the division, then v, must be either v; or v;. Therefore, this
lemma is proved.

O

Lemma 6. For Complicate IS s;;, any member IS s, of its
division can not be the subset of another IS sy, i.e. spq &
Skt - S

= Sij-

Proof. The source vertex of s is vy, and target vertex is v;.
Suppose a member IS 5,4 G Sii.

Suppose another member IS s,; of the division has its
source vertex v, inside si; and target vertex v, outside Sg;.
Then the boundary vertex (the vertex that has edges to the
non-overlapping parts of both sets) must be v;, otherwise
the independence of si; will be violated. Notice that v, is
inside s,; and the independence of s,; needs to be guaran-
teed, for Vv, € sit, vy & SN Sap, Uy € Skt N Sap, Uz has no
edge with v,. Therefore, v, is a splitting vertex of sy;.

Similarly, if s, has its target vertex v, inside sg; and
source vertex v, outside si, the boundary vertex must be
vi, and v, is a splitting vertex of sg;.

For the member IS s, from the discussion above, we
know that there are at most 2 members in the division that
can overlap with s;. Other members must be either com-
pletely inside si; or completely outside sg;. Let’s discuss
the number of members that overlaps with s;.

If there are 0 member that overlaps with sg¢, sg¢ is the
union of a subset of members of the division, which violates
the definition of division.

If there is 1 member that overlaps with sy, suppose the
corresponding splitting vertex is vy, and the boundary ver-
tex is actually v;. Then sy is an IS containing s,, and
corresponds to the situation of 0 member overlapping. sgp
is the union of a subset of members of the division, and vi-
olates the definition of maximal split.

If there are 2 members that overlaps with sk, suppose
they generate two different splitting vertex v, and v,. Then
Sqp 18 an IS containing s,,, and corresponds to the situation
of 0 member overlapping. s is the union of a subset of
members of the division, and violates the definition of the
division.

If they generate the same splitting vertex vy, from lemma
5, vy is also the connecting vertex of at least 1 other member
Sqb Which has to be inside sj;. Suppose the two overlapping
members are s, that contains vy, and s,4 that contains vy.
As the source vertex of sy, v has path to v, and vy has

path to v,, which implies v, has path to v,. As the target
vertex of sk, v; has path from v, and v; has path from v,,
which implies v, has path from v,. This conflicts with the
fact that s is acyclic. Therefore, this case is not possible.
Therefore, this lemma is proved.
O

Lemma 7. If Complicate IS s;; has at least 1 vertex exclud-
ing v; and vj, then its division has length > 2

Proof. As s;; is Complicate, the members IS of its division
cannot have the source vertex as v; and target vertex as v; at
the same time. If s;; has at least 1 vertex excluding v; and
v;, and its division has length 2, then its division must be
{Sik, [sk;}. and vy, will be the linear splitting vertex of s;;,
which violates that s;; has no splitting vertex.

If s;; has no splitting vertex, it has at least 2 edges and
cannot have a trivial length 1 maximal split. Therefore, its
maximal split has length > 2 O

2.2. Uniqueness of Division Tree

To prove this uniqueness, we simply discuss the unique-
ness of division of Linear IS, Branch IS and Complicate IS.

2.2.1 Uniqueness of Division of Linear IS

Proof. By the definition of Linear IS division and Lemma
4, the uniqueness of the division is equivalent to the unique-
ness of the linear splitting vertex set of a Linear IS. The
linear splitting vertex set is obviously unique. O

2.2.2 Uniqueness of Division of Branch IS

Proof. 1If there exists another division, there must be a
branch member s}; in division 1 and a branch member s7;
. .. 1 2 1 2
in division 2, where s;; N s7; # {v;, v, } and s;; # s7;.
3. 1 2 3 s
Denote s7; = s;; N s;;. By Lemma 1 and 2, s7; is also

an IS. From the definition of the division, we know s}j and
s7; cannot be divided into more branches, s?; = s}; = 7.

Therefore, the division of Branch IS is unique.

2.2.3 Uniqueness of Division of Complicate IS

Proof. As the IS in the division tree has at least 1 vertex
excluding source and target vertex, with Lemma 7, we know
that the division of Complicate IS s;; will have length > 2.
Denote this division as {s,,}, we only need to prove this
division is unique.

Suppose there is a another different division {s,, }, let us
only check the difference between {s,,} and {s},, }. Denote
{sie} and {s,} with {s,,} — {5k} = {5y} — {5}} and
s € {su},s' € {shehs = s/ As {8y} — {sn} =
{80} = {5k}, we have U{sic} = Ufs)

Obviously, [{sx:}| > 2 and |{s},}| > 2. Denote {v} as
all the connecting vertices of s € {s }, and {v'} for {s},}.
Obviously {v} # 0 and {v'} # 0. As s;; is not Branch IS,

év}U{%Uj}*{%Uj} # O and {v'}U{vi, v} —{vi, v} #

Suppose Sqp, Spe € {8kt }, according to Lemma 5, there’s
at least 1 other member IS that has v, as connecting vertex.
Suppose the other connecting vertex of this member IS is
vg. Let’s discuss whether v, € {v’'} and whether vy €
U{Skt}.

If vg & U{ske}, then v, must occur in {v'}. Otherwise,
vp would be inside an IS which would be violated by vg.
Given v, € {v'}, as sqp & {S},, }. suppose s, € {s},} and
Sab N Sep # 0. If v, € 5¢p, from Lemma 1, s, is invalid IS.
If v. € s4p, from Lemma 5, s, is invalid IS. In this case,
there cannot exist another different division.

If vg € U{spt}, then spq € {spe}. If v, € {0}, we
can use the same logic above to show this is impossible.
Therefore, v, ¢ {v'} and spq is contained by an IS s. From
Lemma 6, this is impossible. In this case, there cannot exist
another division.

In all the cases, there cannot exist another division.
Therefore, the division of Complicate IS is unique. O

2.3. Completeness of Division Tree

Similar with the uniqueness, the completeness of divi-
sion tree is equivalent to the completeness of the division
of an IS. To prove this completeness, we simply discuss the
completeness of division of Linear IS, Branch IS, and Com-
plicate IS.

An equivalent statement of the completeness of the divi-
sion is: there doesn’t exist an IS whose source vertex is in
one member IS of the division and whose target vertex is in
another member IS of the division.

2.3.1 Completeness of Division of Linear IS

Proof. Suppose there exists an IS s,, whose source vertex
vp is in one member IS s; and whose target vertex vy is in
another member IS s5.

If v, is not an endpoint vertex of sq, then according to
Lemma 3, v, is also a linear splitting vertex in s; and can
break s; into smaller IS, which makes v, also the linear
splitting vertex of the whole IS s;;. However, v,, is not the
splitting vertex of the whole IS s;;. This also applies to v,.
Therefore, the division of Linear IS is complete. O

2.3.2 Completeness of Division of Branch IS

Proof. Suppose there exists an IS s,, whose source vertex
vy, is in one branch sj; and whose target vertex v, is in an-

other branch s7;. As s,, crosses s;; and s7;, there exists a

boundary vertex v in s,,, which belongs to sllj and has di-
rect connection with a vertex outside s}j. If v is not v; or vy,
it will violate the independence of s;;. If v = v;, as v; is the
source vertex of both s;; and s;, it cannot be the boundary
vertex, same when v = v;. Therefore, there cannot exist
such an IS s;;. The division of Branch IS is complete. []

2.3.3 Completeness of Division of Closed Set Type 3

Proof. Suppose there exists an IS s,, whose source vertex
vp is in one member IS s; and whose target vertex v, is in
another member IS s,. Same with Branch IS, the boundary
vertex v has to be the endpoint vertex of s; or the indepen-
dence of s; will be violated. According to Lemma 5, v is
the connecting vertex of at least 3 members, meaning that v
will at least have 1 connection with another IS s3. To main-
tain the independence of s,4, 5,4 has to contain s3 as well.
However, s3 also has its endpoint vertices. This will propa-
gate until s,,, becomes the whole closed set s;;. Therefore,
there cannot exist such an IS s,,. The division of Compli-
cate IS is complete. O

3. Complexity Analysis
3.1. Algorithm 1

Suppose there are |V| vertices and |E| edges in the
computation graph. There are O(|V|?) vertex pairs. For
each vertex pair, the time cost is mainly on constructing
accessibility graph and finding the shortest path. Denote
the source vertex of the whole computation graph as
vo. To construct an accessibility graph, first we traverse
the linear computation graph, record the accumulated
sum [(vp,v;) for each vertex v;, and form a table of
l(vi,v5) = l(vo,v;) — l(vo,v;) — l(v;). These steps will
cost O(|V'|?) and will only run once. Then we traverse each
(v, v;) pair to form the edges of the accessibility graph,
which also cost O(|E|). Solving the shortest path problem
in accessibility graph will cost O(|V|log|V| + |E|).
Therefore, the overall time complexity of Algorithm 1
would be O(|V|?|E| + |V [*log|V]).

The space complexity would be O(|V|?) for the table of
I(vi,v;) and the accessibility graph itself.

3.2. Algorithm 2

Suppose there are |V%| vertices and |E/| edges in
the IS s;;. In step 2, getting {v;n,} and {voy:} will cost
O(|V'¥]) time for traversing the ancestors and descendants
of v;. In our implementation, an array a of length |V |
is used to represent {v;,} and {vou:}: a; = 1 indicates
v; € {vin}, a; = 2 indicates v; € {Vgu} and a; = 0
indicates v; ¢ {v;n} U {vout}. Then the union check and
intersection check in step 3 can be done in O(|V%|). The

connection check in step 3 traverses the edges and costs
O(|E"). Other steps are O(1). Therefore, the overall time
complexity of Algorithm 2 would be O(|V#|3).

The space complexity would be O(|V%/|) for the array to
represent {v;;, } and {vVpye }-

3.3. Algorithm 3

Suppose there are |V | vertices in the IS s;;. The most
time consuming part will be from step 7 to step 18. Other
steps are O(1). In step 7 to step 18, every edge between
two vertices in s;; is at most visited once and there are
O(EY) edges. Therefore, the overall time complexity of
Algorithm 3 would be O(E%).

In our implementation, an array of length |V%/| is used
to represent the vertex set s = {vy}. Therefore, the space
complexity would be O(|V¥]).

3.4. Algorithm 4

Suppose there are |V vertices and |E%/| edges in the
IS s;; and there are O(|V%/|?) vertex pairs. For each vertex
pair, the connection check in step 2-4 will cost O(|E%]),
similar to the connection check in Algorithm 2. Thus step
1-4 will cost O(|V#¥|?|E%|). In our implementation, for
each vertex in the IS s;;, we select the largest formed
IS sj; that contains this vertex. The IS number is then
reduced to O(|V%|) and step 5-6 can be done in O(|V¥ |3).
Therefore, the overall time complexity of Algorithm 4
would be O(|V¥|2|E¥Y| + |V 3)

As O(|V%|?) IS can be formed in step 1-4 and each
closed set is a smaller DAG with O(|V*|) vertices and cost
O(|V'%|?) space, the space complexity would be O(|V¥|*)
for all these closed sets.

3.5. Algorithm 5

Given a max term C|, the actual time consuming part in
the recursion will be step 9 which calls the LCG solver
under constraint C, and other steps would be O(1). Sup-
pose the LCG solver is called & times, solving problems
of ai,ase,...,a; vertices and ey, es, ..., e edges. The total
complexity of this would be O(a1loga;+e1)+O0(aslogas+
e2) + ... + O(aglogay, + ei). Notice that a; + as + ... +
ar < |V| for the fact that any vertex in the computa-
tion graph would not be solved twice by LCG solver, and
e1t+ea+...+ep < |E|, wehave ajloga; +e1 +aslogas +
ez + ... + aglogay + e, < |V|log|V'| + | E|. Therefore the
time complexity of Algorithm 5 is O(|V |log|V'| + | E|).

3.6. Algorithm 6

Step 1 is similar to step 1-4 in Algorithm 4 with s;;
being the whole computation graph. Therefore, the overall

time complexity for step 1is O(|V¥|2|EY| + |[Vi7]3).

In step 2, the complexity of building division tree is
related to the complexity of getting the division of an IS.
For Linear IS, getting the division cost O(|V|?) time. For
Branch IS, Algorithm 3 is used to get its division and costs
O(|E]|) time. For Complicate IS, Algorithm 4 is called to
solve for its division. Notice that we have already stored
all possible IS in step 1, step 1-4 in Algorithm 4 can be
skipped and thus the time complexity of getting the division
of Complicate IS is reduced to O(|V'|?). Therefore, getting
the division of an arbitrary IS costs O(]V|?) time. In
depth ¢ of the division tree, suppose there are k IS, and the
number of vertices of jth closed sets is a;. To build depth
1+ 1 of the division tree, we need to get the division of all
these IS, which will cost Y-, O(a?). As - a; < [V], we
have >-, O(a}) < O(|V]?). As the depth of division tree
is log|V|, the overall time complexity of step 2 would be
O([V[Plog|V]).

For the loop, the length of {c} would be O(|V|?) for
there are O(|V|?) vertex pair, and the recursion costs
O(|V]log|V| + |E|). Therefore the time complexity of the
loop is O(|V || E| + |V |3log|V]).

Step 1 would cost O(]V|*) space to store all the possible
closed sets. Step 2 would cost O(|V|?) space for the
division tree. the loop would cost O(|V'|?) space for calling
LCG solver.

In conclusion, the overall time complexity of Algorithm
6 is O(JV]?|E| + |V[?log|V|) and the overall space
complexity of Algorithm 6 is O(|V[*).

4. Runtime Analysis

The number of vertices in the computation graph and
the preprocess time of ACG Solver (Algorithm 6) for each
network are listed in Table 1. All the preprocess time were
measured on a desktop.

Although it might be concerning that the preprocess time
is too much for some deep networks, it is still relatively
small compared to training processes which might cost
days or even weeks. More importantly, solving the optimal
solution for a network is an one-time effort. The optimal
solutions for all popular networks will be released online
for people to use without taking the time to run ACG solver.

Table 1: Preprocess time by ACG Solver

Linear network |Number of vertices | Preprocess Time (s)
Alexnet 12 0.097
Vgell 17 0.198
Vegl3 19 0.274
Vggl6 22 0.416
Veggl9 25 0.531
Non-linear network| Number of vertices | Preprocess Time (s)
Resnet18 51 0.200
Resnet34 91 0.502
Resnet50 125 0.910
Resnet101 244 2.690
Resnet152 363 6.576
Densenet121 306 35.024
Densenet161 406 79.754
Densenet169 426 87.111
Densenet201 506 160.808
Inceptionv3 219 4.344
NASNet 1149 39.098
AmoebaNet 1015 30.250
DARTS 1073 28.483

5. Visualization

We visualize the computation graph of Alexnet, vggll,
vggl3, vggl6 ,vggl9 and CustomNet and the solution
of our approach (in green) and the solution of Chen’s
approach (in red). In the computation graphs, the cost
of each vertex and the actual operation of each edge are
also marked. The cost of each vertex is the size of this
tensor during forward given the input as [1, 3,224, 224]
([1, 3,300, 300] for inception v3). For example, in Alexnet,
the input is [1, 3,224, 224] and thus the source vertex has
the cost 150528 = 1 x 3 x 224 x 224. After 2D convolution
and relu, the tensor becomes [1,64,55,55] and thus the
second vertex has the cost 193600 = 1 x 64 x 55 X 55.

conv2dtreln

o conv2dtreln maxpool2d o convZd-+relu maxpool2d
150528 46656 32448

onv2d+reln

convZdtrelu
1000

conv2dtrelu

onv2dtreln

conv2dtrelu

@ conv2dtreln

(b) Gradient checkpoints (red) of Chen’s approach

Figure 5: Gradient checkpoints found on Alexnet

o conv2dtreln maxpoolzd conv2dtreln maxpool2d conv2dtreln
150528 802816 401408
. fc __ fetreln - reshapetfctreln _ maxpool2d - conv2dtreln - convzdtrelun N maxpoolzd
150528 150528 150528 25088 100352 100352 100352

(a) Gradient checkpoints (green) of our approach

conv2dtreln maxpoolzd conv2dtreln maxpool2d conv2dtreln conv2dtreln maxpool2d convZdtreln

conv2dtreln

maxpool2d convZdtreln

conv2cHreln

401408

conv2cHreln

fc __ fetreln - reshapetfctreln _ maxpool2d - conv2dtreln - convzdtrelun N maxpoolzd
150528 150528 25088 100352 100352 100352 401408

(b) Gradient checkpoints (red) of Chen’s approach

Figure 6: Gradient checkpoints found on vggl1
conv2dtrelu conv2dtrelu maxpool2d)
150528 802816

convldtreln

convZdtreln conv2dtreln

(b) Gradient checkpoints (red) of Chen’s approach

Figure 7: Gradient checkpoints found on vggl3

conv2dtrelu conv2drelu

conv2dtreln conv2dreln maxpool2d)
150528 802516

conv2dtrelu conv2dtreln

maxpool2d
200704 i

comv2dieln TN convadrelu TN convdreln N maxpool2d reshapetfctrelu fetrelu fe o
—@ —\E)i‘l/ 100352 150528

(a) Gradient checkpoints (green) of our approach

conv2dtreln conv2dreln conv2dtrelu conv2dtrelu

(b) Gradient checkpoints (red) of Chen’s approach

Figure 8: Gradient checkpoints found on vggl6

