
Supplementary Material of Optimal Gradient Checkpoint Search for Arbitrary
Computation Graphs

Jianwei Feng, Dong Huang
Robotics Institute, Carnegie Mellon University

Pittsburgh, PA 15213
jfeng1@andrew.cmu.edu, donghuang@cmu.edu

1. Extra Examples
1.1. Extra Examples for Linear Computation

Graph

Figure 1: Example linear network for gradient checkpoint
training. Letter denotes index of vertex and green vertices
denotes gradient checkpoints.

Fig. 1 is an example linear network for gradient check-
point training. Vertices vi, vj , vk are stored in the first for-
ward. During backward from vk to vj , a local forward is
conducted starting from vj to recompute vp and vq . During
backward from vj to vi, vt is recomputed from vi. The re-
computed vertices are used to compute gradients for back-
ward.

Figure 2: Example of memory cost function for Linear
Computation Graph. Number in the vertex denotes its mem-
ory cost, and green vertices denotes gradient checkpoints.

Fig. 2 explains how we compute memory loss on the lin-
ear computation graph with gradient checkpoint training.
Recall that the loss function is as follows:

min
V R

(
∑
i

l(vRi) + max
i

l(vRi , v
R
i+1)), (1)

In Fig. 2, V R is the GCs set (green vertices).
∑

i l(v
R
i) is

simply the sum of loss of these stored vertices: 10+9+10 =
29. max

i
l(vRi , v

R
i+1)) describes the maximum re-forward

loss. In this example, there are two local re-forwarding.

Loss for the second re-forward: 6 + 7 = 13. Loss for the
first re-forward is 8. For each re-forwarding, the loss of it
is simply the sum of all the vertices in between. Therefore,
maximal Re-forward loss is max{13, 8} = 13, and total
Loss is 29 + 13 = 42.

Figure 3: Denote C = max
i

l(vRi , v
R
i+1). Given C = 8, this

is an example of Accessibility Graph. Number in the vertex
denotes its loss. The red edges are newly added accessibility
edges in the accessibility graph.

Fig. 3 shows an example of accessibility graph. Given
a certain C = max

i
l(vRi , v

R
i+1), in the accessibility graph,

two vertex have accessibility edge as long as their Re-
forwarding loss is not greater than C. For example, the first
vertex (loss 10) and the third vertex (loss 9) has accessibility
edge because the re-forwarding loss (8) is not greater than
C

1.2. Extra Examples for Arbitrary Computation
Graph

Figure 4: Example of gradient checkpointing for non-linear
computation graph. Letter denotes vertex index, number
denotes vertex memory cost and green vertices denote gra-
dient checkpoints. The edges in the right graph are folded
Independent Segment in the left graph.

Fig. 4 shows an example of gradient checkpoint train-

1

ing for a non-linear computation graph. Suppose we se-
lect vertices {vi, vk, vt, vj} as gradient checkpoints. Based
on the gradient checkpoints, the computation graph has IS
{sik, sit, skt, skj , stj}. If we view these IS as edges and
fold the details within IS, we will get another ACG shown
in the right of Fig. 4, where the vertices are GCs and the
edges are IS in the original graph . During the first for-
ward, only GCs {vi, vk, vt, vj} are stored. Re-forwarding
and backward are conducted independently in each IS.

2. Proof
2.1. Definitions and Lemmas

Definition 1. Independent Segment(IS): An IS sij =
(V ij , Eij)) satisfies the following three properties: 1. All
the vertices in V ij have a common ancestor vi and a com-
mon descendent vj; 2. Denote the set of edges between two
arbitrary vertices in V ij is E′, the edge from vi to vj (if
exists) as eij . E must either be E′ or E′ − {eij}; 3. An
arbitrary vk ∈ (V ij − {vi, vj}) doesn’t have edge with an-
other arbitrary vt /∈ V ij . For multiple valid IS between vi
and vj , we denote the largest one as sij

Definition 1 is to clarify properties of IS in maths for the
following proof.

Definition 2. [sij) = (V ij − {vj}, Eij). (sij] = (V ij −
{vi}, Eij). (sij) = (V ij − {vi, vj}, Eij).

For convenience, we define notations for IS sij exclud-
ing vi, or vj or both.

Lemma 1. If (sij) ∩ (skt) 6= ∅ and (sij) 6⊂ (skt) and
(skt) 6⊂ (sij), then (sij)∩ (skt) = (skj) or (sij)∩ (skt) =
(sit)

Proof. Let sij ∩ skt = spq = {V pq, Epq}. If vp 6= vi and
vp 6= vk and vq 6= vj and vq 6= vt, then vi, vk has path to
vp and vj , vt has path from vq . Therefore, vp has at least
2 immediate parents va, vb with va ∈ sij , va 6∈ skt, vb ∈
skt, vb 6∈ sij . If so, the independence of sij and skt is vio-
lated. Therefore, vp must be vi or vk.

Same on vq , vq must be vj or vt.
If vp = vi, vq = vj , then sij ⊂ skt. If vp = vk, vq = vt,

then skt ⊂ sij . Therefore, vp = vi, vq = vt or vp =
vk, vq = vj . Suppose vp = vk, vq = vj , let’s prove spq is
an IS.

With spq ⊂ skt, ∀v1 ∈ (spq), v1 has no edge with v2 6∈
(skt). With spq ⊂ sij , ∀v1 ∈ (spq), v1 has no edge with
v2 6∈ (sij). Therefore, ∀v1 ∈ (spq), v1 has no edge with
v2 6∈ spq . The independence of spq is guaranteed.

In the discussion before, we can see the source vertex vp
of spq must be either vi or vk. If vi and vk are both the
source vertices of spq , then vi ∈ skt and vk ∈ sij , vi has
path to vk and vk has path to vi, which will force vi = vk

because the sij , skt is acyclic. Same on vq , spq can only
have 1 source vertex and 1 target vertex. Therefore, spq is
an IS.

Therefore, (sij)∩ (skt) = (skj) or (sij)∩ (skt) = (sit).

Lemma 2. The intersection of IS spq = sij ∩ skt 6= ∅ is
also an IS

Proof. Given the independence of sij and skt, the indepen-
dence of spq is obvious. The remaining thing is whether spq
only has 1 source vertex and 1 target vertex. In the proof
of Lemma 1, we can see any source or target vertex of spq
will eventually become source or target vertex of sij and
skt. With simple discussion, we can have this lemma.

Lemma 3. If sij ∩ skt = skj 6= ∅, then vk is the linear
splitting vertex of sij and vj is the linear splitting vertex of
skt

Proof. Let’s first prove that vk is the linear splitting vertex
of sij .

Let sik = sij − skj + {vk}. Obviously, sij = sik ∪ skj
and sik ∩ skj = {vk}. We only need to prove that sik is IS.

vi is obviously the only source vertex of sik because vi
is source vertex of sij . We discuss the target vertex here. If
vk is not the target vertex of sik, as vk ∈ s, vk must have
path to the target vertex v of sik and v also has path to vj
as v ∈ sij . Because v /∈ skj , in the path from v to vj , there
exists an edge that connects a vertex v1 ∈ sik with a vertex
v2 ∈ skt which violates the independence of skt. Therefore,
the target vertex of sik can only be vk.

As sik ⊂ [sij), ∀v1 ∈ sik, v1 has no edge with v2 6∈
[sij). As skj is IS, ∀v1 ∈ (sik), v1 has no edge with v2 ∈
(skj). ∀v1 ∈ (sik), v1 can only have edge with v2 ∈ sik.
Thus the independence of sik is guaranteed. Therefore, sik
is IS, vk is the linear splitting vertex of sij .

Similarly, vj is the splitting vertex of skt

Lemma 4. If sij has n splitting vertices {v1, v2, ..., vn},
then sij = si1 ∪ s12 ∪ ... ∪ snj

Proof. If n = 2, the splitting vertices are v1, v2, sij = si1∪
s1j = si2 ∪ s2j . Let v1 ∈ si2, v1 6= v2, then s1j ∩ si2 =
s12 6= ∅. According to Lemma 3, v1 is linear splitting vertex
of si2 and v2 is linear splitting vertex of s1j . Therefore,
sij = si1 ∪ s12 ∪ s2j .

For n > 2, the lemma can be proved by repetitively using
the conclusion in n = 2.

Lemma 5. If the Complicate IS sij has division {spq}, and
|{spq}| > 2, denote {v} as all the connecting vertices of
s ∈ {spq}. Then ∀v ∈ {v}, v 6= vi, vj , v is the connecting
vertex of at least 3 member IS of the division.

2

Proof. If vb is the connecting vertex of only 2 member IS,
suppose the 2 members are sab and sbc. If so, sab and sbc
can be merged into sac. If sac 6= sij , this violates the def-
inition of divison of Complicate IS. Otherwise, it violates
the condition that sij is not a Branch IS and |{spq}| > 2.
It is impossible that the 2 members are sab and scb because
in this way vb has no path to vj and violates the definition
of IS. If vb is the connecting vertex of only 1 member IS of
the division, then vb must be either vi or vj . Therefore, this
lemma is proved.

Lemma 6. For Complicate IS sij , any member IS spq of its
division can not be the subset of another IS skt, i.e. spq $
skt $ sij .

Proof. The source vertex of skt is vk and target vertex is vt.
Suppose a member IS spq $ skt.

Suppose another member IS sab of the division has its
source vertex va inside skt and target vertex vb outside skt.
Then the boundary vertex (the vertex that has edges to the
non-overlapping parts of both sets) must be vt, otherwise
the independence of skt will be violated. Notice that vt is
inside sab and the independence of sab needs to be guaran-
teed, for ∀vx ∈ skt, vx /∈ s ∩ sab, vy ∈ skt ∩ sab, vx has no
edge with vy . Therefore, va is a splitting vertex of skt.

Similarly, if sba has its target vertex va inside skt and
source vertex vb outside skt, the boundary vertex must be
vk and va is a splitting vertex of skt.

For the member IS skt, from the discussion above, we
know that there are at most 2 members in the division that
can overlap with skt. Other members must be either com-
pletely inside skt or completely outside skt. Let’s discuss
the number of members that overlaps with skt.

If there are 0 member that overlaps with skt, skt is the
union of a subset of members of the division, which violates
the definition of division.

If there is 1 member that overlaps with skt, suppose the
corresponding splitting vertex is vb, and the boundary ver-
tex is actually vt. Then skb is an IS containing spq and
corresponds to the situation of 0 member overlapping. skb
is the union of a subset of members of the division, and vi-
olates the definition of maximal split.

If there are 2 members that overlaps with skt, suppose
they generate two different splitting vertex va and vb. Then
sab is an IS containing spq and corresponds to the situation
of 0 member overlapping. sab is the union of a subset of
members of the division, and violates the definition of the
division.

If they generate the same splitting vertex vb, from lemma
5, vb is also the connecting vertex of at least 1 other member
sab which has to be inside skt. Suppose the two overlapping
members are scb that contains vk, and sbd that contains vt.
As the source vertex of skt, vk has path to vb and vk has

path to va, which implies vb has path to va. As the target
vertex of skt, vt has path from vb and vt has path from va,
which implies vb has path from va. This conflicts with the
fact that skt is acyclic. Therefore, this case is not possible.

Therefore, this lemma is proved.

Lemma 7. If Complicate IS sij has at least 1 vertex exclud-
ing vi and vj , then its division has length > 2

Proof. As sij is Complicate, the members IS of its division
cannot have the source vertex as vi and target vertex as vj at
the same time. If sij has at least 1 vertex excluding vi and
vj , and its division has length 2, then its division must be
{sik, [skj}, and vk will be the linear splitting vertex of sij ,
which violates that sij has no splitting vertex.

If sij has no splitting vertex, it has at least 2 edges and
cannot have a trivial length 1 maximal split. Therefore, its
maximal split has length > 2

2.2. Uniqueness of Division Tree

To prove this uniqueness, we simply discuss the unique-
ness of division of Linear IS, Branch IS and Complicate IS.

2.2.1 Uniqueness of Division of Linear IS

Proof. By the definition of Linear IS division and Lemma
4, the uniqueness of the division is equivalent to the unique-
ness of the linear splitting vertex set of a Linear IS. The
linear splitting vertex set is obviously unique.

2.2.2 Uniqueness of Division of Branch IS

Proof. If there exists another division, there must be a
branch member s1ij in division 1 and a branch member s2ij
in division 2, where s1ij ∩ s2ij 6= {vi, vj} and s1ij 6= s2ij .

Denote s3ij = s1ij ∩ s2ij . By Lemma 1 and 2, s3ij is also
an IS. From the definition of the division, we know s1ij and
s2ij cannot be divided into more branches, s3ij = s1ij = s2ij .
Therefore, the division of Branch IS is unique.

2.2.3 Uniqueness of Division of Complicate IS

Proof. As the IS in the division tree has at least 1 vertex
excluding source and target vertex, with Lemma 7, we know
that the division of Complicate IS sij will have length > 2.
Denote this division as {spq}, we only need to prove this
division is unique.

Suppose there is a another different division {s′pq}, let us
only check the difference between {spq} and {s′pq}. Denote
{skt} and {s′kt} with {spq} − {skt} = {s′pq} − {s′kt} and
6 ∃s ∈ {skt}, s′ ∈ {s′kt}, s = s′. As {spq} − {skt} =
{s′pq} − {s′kt}, we have ∪{skt} = ∪{s′kt}

3

Obviously, |{skt}| ≥ 2 and |{s′kt}| ≥ 2. Denote {v} as
all the connecting vertices of s ∈ {skt}, and {v′} for {s′kt}.
Obviously {v} 6= ∅ and {v′} 6= ∅. As sij is not Branch IS,
{v}∪{vi, vj}−{vi, vj} 6= ∅ and {v′}∪{vi, vj}−{vi, vj} 6=
∅.

Suppose sab, sbc ∈ {skt}, according to Lemma 5, there’s
at least 1 other member IS that has vb as connecting vertex.
Suppose the other connecting vertex of this member IS is
vd. Let’s discuss whether vb ∈ {v′} and whether vd ∈
∪{skt}.

If vd 6∈ ∪{skt}, then vb must occur in {v′}. Otherwise,
vb would be inside an IS which would be violated by vd.
Given vb ∈ {v′}, as sab 6∈ {s′kt}, suppose seb ∈ {s′kt} and
sab ∩ seb 6= ∅. If va ∈ seb, from Lemma 1, seb is invalid IS.
If ve ∈ sab, from Lemma 5, sab is invalid IS. In this case,
there cannot exist another different division.

If vd ∈ ∪{skt}, then sbd ∈ {skt}. If vb ∈ {v′}, we
can use the same logic above to show this is impossible.
Therefore, vb 6∈ {v′} and sbd is contained by an IS s. From
Lemma 6, this is impossible. In this case, there cannot exist
another division.

In all the cases, there cannot exist another division.
Therefore, the division of Complicate IS is unique.

2.3. Completeness of Division Tree

Similar with the uniqueness, the completeness of divi-
sion tree is equivalent to the completeness of the division
of an IS. To prove this completeness, we simply discuss the
completeness of division of Linear IS, Branch IS, and Com-
plicate IS.

An equivalent statement of the completeness of the divi-
sion is: there doesn’t exist an IS whose source vertex is in
one member IS of the division and whose target vertex is in
another member IS of the division.

2.3.1 Completeness of Division of Linear IS

Proof. Suppose there exists an IS spq whose source vertex
vp is in one member IS s1 and whose target vertex vq is in
another member IS s2.

If vp is not an endpoint vertex of s1, then according to
Lemma 3, vp is also a linear splitting vertex in s1 and can
break s1 into smaller IS, which makes vp also the linear
splitting vertex of the whole IS sij . However, vp is not the
splitting vertex of the whole IS sij . This also applies to vq .
Therefore, the division of Linear IS is complete.

2.3.2 Completeness of Division of Branch IS

Proof. Suppose there exists an IS spq whose source vertex
vp is in one branch s1ij and whose target vertex vq is in an-
other branch s2ij . As spq crosses s1ij and s2ij , there exists a

boundary vertex v in spq , which belongs to s1ij and has di-
rect connection with a vertex outside s1ij . If v is not vi or vj ,
it will violate the independence of sij . If v = vi, as vi is the
source vertex of both s1ij and s2ij , it cannot be the boundary
vertex, same when v = vj . Therefore, there cannot exist
such an IS sij . The division of Branch IS is complete.

2.3.3 Completeness of Division of Closed Set Type 3

Proof. Suppose there exists an IS spq whose source vertex
vp is in one member IS s1 and whose target vertex vq is in
another member IS s2. Same with Branch IS, the boundary
vertex v has to be the endpoint vertex of s1 or the indepen-
dence of s1 will be violated. According to Lemma 5, v is
the connecting vertex of at least 3 members, meaning that v
will at least have 1 connection with another IS s3. To main-
tain the independence of spq , spq has to contain s3 as well.
However, s3 also has its endpoint vertices. This will propa-
gate until spq becomes the whole closed set sij . Therefore,
there cannot exist such an IS spq . The division of Compli-
cate IS is complete.

3. Complexity Analysis
3.1. Algorithm 1

Suppose there are |V | vertices and |E| edges in the
computation graph. There are O(|V |2) vertex pairs. For
each vertex pair, the time cost is mainly on constructing
accessibility graph and finding the shortest path. Denote
the source vertex of the whole computation graph as
v0. To construct an accessibility graph, first we traverse
the linear computation graph, record the accumulated
sum l(v0, vi) for each vertex vi, and form a table of
l(vi, vj) = l(v0, vj) − l(v0, vi) − l(vi). These steps will
cost O(|V |2) and will only run once. Then we traverse each
(vi, vj) pair to form the edges of the accessibility graph,
which also cost O(|E|). Solving the shortest path problem
in accessibility graph will cost O(|V |log|V | + |E|).
Therefore, the overall time complexity of Algorithm 1
would be O(|V |2|E|+ |V |3log|V |).

The space complexity would be O(|V |2) for the table of
l(vi, vj) and the accessibility graph itself.

3.2. Algorithm 2

Suppose there are |V ij | vertices and |Eij | edges in
the IS sij . In step 2, getting {vin} and {vout} will cost
O(|V ij |) time for traversing the ancestors and descendants
of vt. In our implementation, an array a of length |V ij |
is used to represent {vin} and {vout}: ai = 1 indicates
vi ∈ {vin}, ai = 2 indicates vi ∈ {vout} and ai = 0
indicates vi /∈ {vin} ∪ {vout}. Then the union check and
intersection check in step 3 can be done in O(|V ij |). The

4

connection check in step 3 traverses the edges and costs
O(|Eij |). Other steps are O(1). Therefore, the overall time
complexity of Algorithm 2 would be O(|V ij |3).

The space complexity would be O(|V ij |) for the array to
represent {vin} and {vout}.

3.3. Algorithm 3

Suppose there are |V ij | vertices in the IS sij . The most
time consuming part will be from step 7 to step 18. Other
steps are O(1). In step 7 to step 18, every edge between
two vertices in sij is at most visited once and there are
O(Eij) edges. Therefore, the overall time complexity of
Algorithm 3 would be O(Eij).

In our implementation, an array of length |V ij | is used
to represent the vertex set s = {vk}. Therefore, the space
complexity would be O(|V ij |).

3.4. Algorithm 4

Suppose there are |V ij | vertices and |Eij | edges in the
IS sij and there are O(|V ij |2) vertex pairs. For each vertex
pair, the connection check in step 2-4 will cost O(|Eij |),
similar to the connection check in Algorithm 2. Thus step
1-4 will cost O(|V ij |2|Eij |). In our implementation, for
each vertex in the IS sij , we select the largest formed
IS skt that contains this vertex. The IS number is then
reduced to O(|V ij |) and step 5-6 can be done in O(|V ij |3).
Therefore, the overall time complexity of Algorithm 4
would be O(|V ij |2|Eij |+ |V ij |3)

As O(|V ij |2) IS can be formed in step 1-4 and each
closed set is a smaller DAG with O(|V ij |) vertices and cost
O(|V ij |2) space, the space complexity would be O(|V ij |4)
for all these closed sets.

3.5. Algorithm 5

Given a max term C, the actual time consuming part in
the recursion will be step 9 which calls the LCG solver
under constraint C, and other steps would be O(1). Sup-
pose the LCG solver is called k times, solving problems
of a1, a2, ..., ak vertices and e1, e2, ..., ek edges. The total
complexity of this would be O(a1loga1+e1)+O(a2loga2+
e2) + ... + O(aklogak + ek). Notice that a1 + a2 + ... +
ak ≤ |V | for the fact that any vertex in the computa-
tion graph would not be solved twice by LCG solver, and
e1+e2+ ...+ek ≤ |E|, we have a1loga1+e1+a2loga2+
e2 + ...+ aklogak + ek ≤ |V |log|V |+ |E|. Therefore the
time complexity of Algorithm 5 is O(|V |log|V |+ |E|).

3.6. Algorithm 6

Step 1 is similar to step 1-4 in Algorithm 4 with sij
being the whole computation graph. Therefore, the overall

time complexity for step 1 is O(|V ij |2|Eij |+ |V ij |3).

In step 2, the complexity of building division tree is
related to the complexity of getting the division of an IS.
For Linear IS, getting the division cost O(|V |3) time. For
Branch IS, Algorithm 3 is used to get its division and costs
O(|E|) time. For Complicate IS, Algorithm 4 is called to
solve for its division. Notice that we have already stored
all possible IS in step 1, step 1-4 in Algorithm 4 can be
skipped and thus the time complexity of getting the division
of Complicate IS is reduced to O(|V |3). Therefore, getting
the division of an arbitrary IS costs O(|V |3) time. In
depth i of the division tree, suppose there are k IS, and the
number of vertices of jth closed sets is aj . To build depth
i+ 1 of the division tree, we need to get the division of all
these IS, which will cost

∑
j O(a3j). As

∑
j aj ≤ |V |, we

have
∑

j O(a3j) ≤ O(|V |3). As the depth of division tree
is log|V |, the overall time complexity of step 2 would be
O(|V |3log|V |).

For the loop, the length of {c} would be O(|V |2) for
there are O(|V |2) vertex pair, and the recursion costs
O(|V |log|V | + |E|). Therefore the time complexity of the
loop is O(|V |2|E|+ |V |3log|V |).

Step 1 would cost O(|V |4) space to store all the possible
closed sets. Step 2 would cost O(|V |2) space for the
division tree. the loop would cost O(|V |2) space for calling
LCG solver.

In conclusion, the overall time complexity of Algorithm
6 is O(|V |2|E| + |V |3log|V |) and the overall space
complexity of Algorithm 6 is O(|V |4).

4. Runtime Analysis

The number of vertices in the computation graph and
the preprocess time of ACG Solver (Algorithm 6) for each
network are listed in Table 1. All the preprocess time were
measured on a desktop.

Although it might be concerning that the preprocess time
is too much for some deep networks, it is still relatively
small compared to training processes which might cost
days or even weeks. More importantly, solving the optimal
solution for a network is an one-time effort. The optimal
solutions for all popular networks will be released online
for people to use without taking the time to run ACG solver.

5

Table 1: Preprocess time by ACG Solver

Linear network Number of vertices Preprocess Time (s)
Alexnet 12 0.097
Vgg11 17 0.198
Vgg13 19 0.274
Vgg16 22 0.416
Vgg19 25 0.531

Non-linear network Number of vertices Preprocess Time (s)
Resnet18 51 0.200
Resnet34 91 0.502
Resnet50 125 0.910
Resnet101 244 2.690
Resnet152 363 6.576

Densenet121 306 35.024
Densenet161 406 79.754
Densenet169 426 87.111
Densenet201 506 160.808
Inceptionv3 219 4.344

NASNet 1149 39.098
AmoebaNet 1015 30.250

DARTS 1073 28.483

5. Visualization
We visualize the computation graph of Alexnet, vgg11,

vgg13, vgg16 ,vgg19 and CustomNet and the solution
of our approach (in green) and the solution of Chen’s
approach (in red). In the computation graphs, the cost
of each vertex and the actual operation of each edge are
also marked. The cost of each vertex is the size of this
tensor during forward given the input as [1, 3, 224, 224]
([1, 3, 300, 300] for inception v3). For example, in Alexnet,
the input is [1, 3, 224, 224] and thus the source vertex has
the cost 150528 = 1×3×224×224. After 2D convolution
and relu, the tensor becomes [1, 64, 55, 55] and thus the
second vertex has the cost 193600 = 1× 64× 55× 55.

6

(a) Gradient checkpoints (green) of our approach

(b) Gradient checkpoints (red) of Chen’s approach

Figure 5: Gradient checkpoints found on Alexnet

(a) Gradient checkpoints (green) of our approach

(b) Gradient checkpoints (red) of Chen’s approach

Figure 6: Gradient checkpoints found on vgg11

(a) Gradient checkpoints (green) of our approach

(b) Gradient checkpoints (red) of Chen’s approach

Figure 7: Gradient checkpoints found on vgg13

7

(a) Gradient checkpoints (green) of our approach

(b) Gradient checkpoints (red) of Chen’s approach

Figure 8: Gradient checkpoints found on vgg16

8

