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In this Supplementary Material, we present additional
details and discussions for the image formation model and
DISCNet proposed in the main body as follows:

• Light Propagation Model

• Incomplete Degradation in LDR Scenes

• Comparison with Previous Dataset

• Training Details

• Limitations

• Visual Results on Simulated Dataset

• Visual Results on Real Dataset

1. Light Propagation Model
The light propagation model in the UDC system can be

divided into following steps:
Propagation between the point source and the OLED
display. The light emitted from the point light source first
hit on the front plane of the OLED display, where the opti-
cal field UD−(p, q) can be expressed as

UD−(p, q) = exp

(
iπ

λz1
(p2 + q2)

)
, (1)

where (p, q) is the 2D spatial coordinates, λ is the wave-
length and z1 is the distance between the point light source
and the OLED display. We assume that the point source has
unit amplitude.
Modulation by the OLED display. The light hit on the
front plane of the OLED display will be modulated by its
transmission function t(p, q), which is determined by the
specific design of the display pattern. The optical field after
modulation UD+(p, q) becomes

UD+(p, q) = UD−(p, q)t(p, q). (2)

Propagation between the OLED display and the lens.
The light modulated by the OLED display propagates for
a distance of d, before hitting on the front plane of the lens,
where the optical field UL−(p, q) can be computed using
Fresnel propagation as

UL−(p, q) = UD+(p, q) ∗ exp

(
iπ

λd
(p2 + q2)

)
. (3)

Here, ∗ denotes the 2-D convolution operator.
Modulation by the lens. The light hit on the front plane of
the camera lens will be modulated by the lens transmission
function, which is determined by focal length f of the lens.
The optical field after modulation UL+(p, q) becomes

UL+(p, q) = UL−(p, q) exp

(
−iπ
λf

(p2 + q2)

)
. (4)

Propagation between the lens and the sensor. The light
modulated by the lens propagates for a distance of z2, be-
fore hitting on the sensor, where the optical field US(p, q)
can be computed using Fresnel propagation as

US(p, q) = UL+(p, q) ∗ exp

(
iπ

λz2
(p2 + q2)

)
. (5)

Finally, the PSF of the imaging system is given by

k = |US |2. (6)

With the above equations, we can theoretically simulate
the PSF of a UDC system, given the exact pixel layout of a
display. Due to proprietary reasons, we do not have access
to the detailed pixel structures of the particular UDC device
(ZTE Axon 20) that we used in the main paper. To val-
idate the above light propagation model, we place another
commercial OLED display with known pixel layout in front
of a normal camera to construct a UDC system, and use it
to measure the PSF. In Figure 1, we found that although
the simulated and real-measured PSF share a similar shape,
they slightly differ in color and contrast due to model ap-
proximations and manufacturing imperfections.

1



Figure 1. Comparison of simulated and real-measured PSF. (a)
The pixel layout of a commercial OLED display. Here, different
gray-scale values represent different light transmittance of the dis-
play. (b) Simulated PSF. (c) Real-measured PSF. The PSFs are
brightened to visualize the structured sidelobe patterns.

2. Incomplete Degradation in LDR Scenes
As described in Section 3.2 of the main body, images

captured by UDC systems in real HDR scenes will exhibit
structured flares near strong light sources. Since the PSF
of UDC has a strong response at the center but vastly lower
energy at long-tail sidelobes, only when convolved with suf-
ficiently high-intensity scenes, these spike-shaped sidelobes
can be amplified to be visible in the degraded image.

Therefore, in an MCIS system proposed in [5], where
scenes are displayed on a LCD monitor, which commonly
has limited dynamic range, the degradation of a UDC imag-
ing system is incomplete compared to the capture in real
HDR scenes. As shown in Figure 2, if the real HDR scene is
directly captured with a UDC device, we can observe flare
effects near strong light sources. However, for the same
scene and same imaging device, the flares are no longer
visible in the acquired image if it is displayed on a LCD
monitor, since the scene in this case only involves limited
dynamic range.

Apart from MCIS data, we also illustrate that HDR
scenes are indispensable for our data simulation pipeline.
Specifically, if we clip the scene from HDR to LDR, the
flare artifacts caused by diffraction effects become invisible
in the degraded images (see Figure 3). This further illus-
trates the importance of HDR scenes. Hence, in order to
correctly model the real degradation of a typical UDC sys-
tem, we involve real HDR scenes in the image formation
model in main paper.

3. Comparison with Previous Dataset
In this section, we compare the datasets used in our work

with previous one [5] in Table 1. The proposed image for-
mation model could simulate more complex and realistic
degradation compared to the dataset in [5].

4. Training Details
Data Simulation for Training. We use the image forma-
tion model in main paper to simulate degraded images ex-
hibiting diffraction artifacts. In particular, we set xmax =

Figure 2. Comparison of UDC images of real HDR scene and
monitor-generated LDR scene. (a) Real HDR scene captured
by a normal camera. (b) Real HDR scene captured by the UDC
device. (c) Monitor-generated LDR scene, i.e. display the image
(a) on a LCD monitor, captured by the UDC device.

(a) Simulated w/ LDR (b) Simulated w/ HDR

Figure 3. Comparison of images simulated with LDR and HDR.

500 for the clipping operation C(·).
For the tone mapping function, we apply a simple rule

[2], given by

φ(x) =
x

x+ α
, (7)

where α controls the scale of high luminances. The hy-
perparameter is set to 0.25 in our case. This formulation
mainly compress the high intensities, scaled by approxi-
mately 1/x, and is guaranteed to bring all intensities within
displayable range. Many scenes are predominated by a nor-
mal dynamic range, but have a few high luminance regions
nearby highlights, e.g., street lamp, sunlight. Besides, the
sidelobes of the PSF have far lower energy compared to the
main peak, leading to relatively low-intensity flare and haze
effects in the degraded images. Therefore, this formulation
can compress saturated highlights while preserving details
in lowlight regions, providing a better display of diffraction
artifacts. For simplicity, we mainly focus on analyzing the
diffraction effects of UDC and set n = 0, providing a noise-
free version of the simulated data.

For testing on simulated datasets, we build a test kernel
set for quantitative evaluations of different methods. It con-
sists 9 selected rotation variations that are performed on the
PSF, i.e., {−12, 9, 6, 3, 0, 3, 6, 9, 12}. The PSFs first rotate
by an angle selected from the above set, and then are con-
volved with the ground-truth images using image formation
model in main paper to generate the corresponding degrade
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Table 1. Comparison of different datasets.

Dataset Zhou et al. [5] Simulated data (Ours) Real data (Ours)
Scene Displayed on a monitor HDR images Real scenes
Dynamic Range Low High High
Data Format 16-bit RAW 32-bit RGB 14-bit RGB
Major Degradation Low-light, Color shift Flare, Haze, Blur, Saturation Flare, Haze, Blur, Saturation, Veiling glare
UDC System Lab prototype - Commodity UDC production

images. In total each ground-truth image has 9 degraded
counterparts, yielding 9 testing sets. Note that only the PSF
at the center of the sensor is measured, and the rest in the
kernel are generated by applying rotation transformations
to the center one. Although it only considers simple vari-
ations (rotation) on the PSF, it can still be used to evaluate
the performance of non-blind image restoration approaches.
Loss Function. To train the proposed model, we adopt two
widely-used losses of image restoration tasks. We originally
experimented with L1 loss between the reconstructed and
ground-truth images in tone-mapped domain. To encourage
more realistic results, we further apply the perceptual loss in
[1], which is defined using the pre-trained VGG-19 network
[3] and given by

LV GG = ||Φl(x̃)− Φl(x̂)||22, (8)

where Φl is the feature maps extracted from the l-th layer
of the pre-trained VGG network, and x̃ is the reconstructed
image of our network. In particular, we use the “conv5-4”
layer as [4]. The total loss for training is formulated by

Ltotal = L1 + λLV GG, (9)

where the weight λ is set to 0.01 for balancing the scale of
different losses in our experiments.

5. Limitations
Kernel Mismatch. Under the non-blind setting, our
method assumes the awareness of the kernel PSF. In real
scenarios, however, an estimation of the PSF can be easily
affected by noises and artifacts, which results in a kernel
mismatch and severely deteriorates the performance of the
network. Figure 4 shows the sensitivity of the PSNR perfor-
mance to the kernel mismatch. In the upper-right and lower-
left regions, where the kernels used for simulation and con-
dition differ the most, we can observe huge gaps (over 3
dB) on the PSNR performance. In contrast, the results on
the diagonal, where the kernels match precisely, show the
best performance in their corresponding rows or columns.
Large and Strong Highlights. While achieving rather sat-
isfactory results on small area of light sources, DISCNet
still struggles when highlight regions are large and intensi-
ties are extremely strong, leading to over-corrected results.
We also conduct experiments on scenes with larger and
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Figure 4. Recovery sensitivity to the kernel mismatch. Simu-
lation angles indicate rotations of PSF used in simulation, while
condition angles represent the ones used as conditions to DISC-
Net.

Degraded Ours GT

Figure 5. Failure cases around strong light sources.

strong highlights to illustrate the limitations of our method,
which is shown in Figure 5. The degraded image contains
extremely strong light sources which causes diffraction ar-
tifacts in large neighbouring low-intensity regions. Never-
theless, our method is still able to suppress flare and haze
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effects and recover lost details in most regions, even when
there exists limited information in these regions. The mid-
dle and bottom rows illustrate a failure mode consisting
of very strong highlights that affect a large unsaturated re-
gion. Our method over-corrects the flares and leaves arti-
facts around the street lamps. This requires further explo-
ration on extreme cases with large and strong highlights.

6. Visual Results on Simulated Dataset
In this section, we demonstrate additional visual results

on simulated data. As shown in Figure 6, Figure 7, and
Figure 8, the proposed DISCNet suppresses flare and haze
effects around highlights, and removes most artifacts in
nearby unsaturated regions.

7. Visual Results on Real Dataset
Post-processing. Since it is beyond the scope of this pa-
per to build a full Image Signal Processor (ISP) to out-
put final images from raw data, we only perform a sim-
ple post-processing pipeline on the input data to adjust the
color intensities and approximate the color of camera out-
puts, which typically exhibit perceptually better color for
viewing on a display. The post-processing includes 1) color
correction by color correction matrix (CCM) from the cam-
era, 2) RGB scaling which transforms camera RGB values
into camera’s output RGB values, and 3) contrast enhance-
ment using Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE). Note that we also adopt the post-processing
pipeline to obtain similar color in the input images for vi-
sual comparisons.
Visual Comparisons. We provide more visual comparisons
with representative methods on real data in Figure 9 and
Figure 10. Our proposed network could remove diffrac-
tion image effects, while leaving least artifacts introduced
by camera.
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Wiener Filter SFTMD DISCNet (Ours)plant

DE-UNet SRMDNFGT

Wiener Filter SFTMD DISCNet (Ours)photo_wall

DE-UNet SRMDNFGT

Wiener Filter SFTMD DISCNet (Ours)Pond_bridge

Figure 6. Visual comparison on simulated input images. (Zoom in for better view.)
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DE-UNet SRMDNFGT

Wiener Filter SFTMD DISCNet (Ours)lamp
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Wiener Filter SFTMD DISCNet (Ours)Rathaus_1
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Wiener Filter SFTMD DISCNet (Ours)Rooftop_night

Figure 7. Visual comparison on simulated input images. (Zoom in for better view.)
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Wiener Filter SFTMD DISCNet (Ours)Rathaus_2
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Wiener Filter SFTMD DISCNet (Ours)Shanghai_bund_2

Figure 8. Visual comparison on simulated input images. (Zoom in for better view.)
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Wiener Filter SFTMD DISCNet (Ours)Canteen1

DE-UNet SRMDNFCamera Output

Wiener Filter SFTMD DISCNet (Ours)Canteen2

Wiener Filter SFTMD DISCNet (Ours)Corridor

DE-UNet SRMDNFCamera Output

Figure 9. Visual comparison on real input images. (Zoom in for better view.)
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Wiener Filter SFTMD DISCNet (Ours)Outdoor

DE-UNet SRMDNFCamera Output

Wiener Filter SFTMD DISCNet (Ours)Gym

DE-UNet SRMDNFCamera Output

Wiener Filter SFTMD DISCNet (Ours)Cafe

DE-UNet SRMDNFCamera Output

Figure 10. Visual comparison on real input images. (Zoom in for better view.)
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