
Information Bottleneck Disentanglement for Identity Swapping

Gege Gao Huaibo Huang Chaoyou Fu Zhaoyang Li Ran He*

National Laboratory of Pattern Recognition, CASIA
Center for Excellence in Brain Science and Intelligence Technology, CAS

School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
{gege.gao,huaibo.huang}@cripac.ia.ac.cn {chaoyou.fu,rhe}@nlpr.ia.ac.cn zhaoyang0427@gmail.com

Appendix

1. Implementation Details
In order to improve the disentangled representation to

generate identity-discriminative swapped faces, a novel
learning-based information disentangling and swapping
framework, InfoSwap, is proposed. In the main paper, we
introduce the intuition and theoretical method of InfoSwap
in detail. Three key points are discussed: the explicit super-
vision for disentanglement based on the information bot-
tleneck principle, the improvement of information bottle-
neck objectives based on contrastive learning, and the met-
ric for evaluating if the generated identities are discrimi-
native based on the statistical features. In this section, we
elaborate on the practical details of InfoSwap.

1.1. Method Details

Parametrization: To predict the information controller λi
at i-th depth, as defined in Eq.(3), we collect m feature
maps from different depths. As the spatial size of these
features differs, we interpolate them bilinearly to match
the size of the attached feature Ri. Then the information
bottleneck IBi uses the resized version of features to pre-
dict the controllers. Each bottleneck, denoted as hIBi

(∗),
consists of three Conv + ReLu blocks. To simplify op-
timization, we parametrize the information controllers as
λi = sigmoid(ri) ∈ [0, 1] where ri = hIBi(R1, · · · , Rm),
to avoid any clipping during optimization.
Initialization: In the beginning, we retain all informa-
tion in Ri by initializing ri = 5 for all depths i and thus
λi ≈ 0.993 ⇒ Zi ≈ Ri, as formulated in Eq.(4). Then,
λi deviates from this starting point to suppress unimportant
areas by adding noise, as visualized in Fig. 1. As the face
recognition model is trained already, adding noise should
preserve the variance of the input to the following lay-
ers [11]. Therefore, we first use 10k images going through
the pre-trained model to calculate the global mean and std.

*Corresponding Author

Figure 1. Visualization of information variance in feature maps.
The colormaps show the values of the information controller λi
(in average). For representing the source identity, areas in deep
blue have values λi ≈ 0, i.e. most information is discarded for,
and areas in hot red have λi ≈ 1, i.e. most information is retained.
While for representing the target perception, it is right the opposite
as we use 1− λi as formulated in Eq.(13).

values of the featureRi at each i-th depth. The noise is then
sampled from the Gaussian distribution with the empirical
mean and std. values.

Experimental Setup: During optimization, we set the ob-
jective of the information bottleneck (Eq.(2)) as LIB =
αLinfo + βLtask, with an additional parameter for easily
control of the trade-off. Experimental results show that
the uniformly uninformative features are obtained when
α : β ≥ 5, namely all information gets discarded. When
α : β ∈ (5, 1], more information passed and less noise is
added. Finally the IIB is trained with the best performing
value α : β = 1 : 5. The hyper parameters for other loss
terms in Eq.(21) are set to β1 = 1, β2 = 5, β3 = 1. More
detailed settings are shown in Tab. 1

Training Strategies: The training is performed on the
training set of size 96000 collected from the FFHQ [5]
and the CelebA-HQ [4] dataset. During training, we
use Adam [6] optimizer for all modules with coefficients
(0.001, 0.999), weight decay 0.00002 and learning rate
0.00005. The entire model InfoSwap is trained end-to-end,
the full training algorithm is summarized in Alg. 1.

Parameter Best Value Search space
Pre-trained Backbone ResNet-50
Amount of internal features in use (m) 10 {8, 9, 10}
Optimizer Adam (b1 = 0.001, b2 = 0.999)
Learning Rate (lrg , lrd) 0.00005 {0.00002, 0.00005, 0.0001}
Epochs 15
Batch Size (B) 4 {1, 2, 4}
Trade-off Factor (α : β) 1 : 5 {10 : 1, 5 : 1, 1 : 1, 1 : 5, 1 : 10}

Table 1. Hyperparameters for InfoSwap. The pre-trained backbone is taken from the pre-trained face recognition model [2].

1.2. Network Architectures

The network architectures of IIB (Informative identity
Bottleneck) and AII (Adaptive Information Integration) for
generating 512 × 512 images are shown in Fig 3. In each
information bottleneck IBi, we use the Gaussian Smooth
with kernel size 1 and standard variance 0.25 to enforce the
local smoothness in each information controller λi, as the
pooling operations (in ResNet-50) and convolutional lay-
ers with stride greater than 1 are ignoring parts of the in-
put. During training, we replace the first pre-trained feature
with another of the same size (32 × 256 × 256) for better
reconstructing the background of the target images, which
is obtained by inputting the target images into one convo-
lutional layer (Conv4× 4, 2, 1). The network architectures
for generating 1024× 1024 images are similar to this.

2. Experimental Results
In this section, we show the qualitative results of the ab-

lation study and more swapped examples on the test set of
the FFHQ [5] and the CelebA-HQ [4] datasets.

2.1. Ablation Studies

The qualitative results of the ablation study are shown in
Fig. 2. It can be observed that in the first configuration (i)
removing the IIB module (InfoSwap w/o IIB), the identi-
ties of the swapped results appear to be affected by the tar-
get identity and look less like the source. The second con-
figuration (ii) replacing the ICL with conventional identity
loss (InfoSwap w/o ICL) suffer the same problem. And in
the third configuration (iii) discarding the information con-
troller λ̃ti (InfoSwap w/o λ̃ti) causes problems of informa-
tion integration such as the inconsistent position of the eyes.
While the full model has much better performance without
such problems, indicating that each of the three designs is
necessary for generating identity-discriminative results with
high-fidelity.

2.2. More Quantitative Results

As shown in Fig 4, we provide more results of InfoS-
wap. The swapping is performed between images that have
large gaps in genders (Fig 4(a)), ages (Fig 4(b)), skin colors
(Fig 4(c)) and lighting conditions (Fig 4(d)), and in all situa-
tions our method has good performances. Besides, we show

more high-fidelity swapping examples of the same gender
and celebrities in Fig. 6 and Fig. 7 respectively. As shown
in Fig. 5, our method performs well at higher resolution of
1024 × 1024. Moreover, in movie scenes with more com-
plex conditions, our method can also produce good results
as shown in Fig. 8. These demonstrate that our method is
very robust and able to work well even under very difficult
situations, which is mainly due to our efficient disentangle-
ment method.

3. Forgery Detection

We use the model from FaceForensics++ [10] to exam-
ine the performance of the SOTA forgery detector on faces
swapped by InfoSwap. For each of the 1000 videos in
FF++, we evenly select 10 results from all the frames ma-
nipulated by our method, along with 10 corresponding tar-
get frames, making up a test set of 20k images. The experi-
mental results are reported in Tab. 2. It can be observed that
current detection algorithms have limited performance on
our method (almost equals random classification). This in-
dicates that our swapped results can be used as useful train-
ing data for better development of the data-driven forgery
detectors.

To this end, we further train the forgery detection model
from FF++ using 100k fake images (100 frames per video)
generated by our method. We test the performance of the
original detector and further train one on the manipulated
dataset provided by [8]. The results are shown in Tab. 3.
We will provide our manipulated videos on FF++ as soon
as possible.

method

FF++ metrics
AUC AP F1 measure MSE

InfoSwap 0.5002 0.5001 0.0031 0.4993
FaceShifter [8] 0.5222 0.5228 0.0047 0.4805
FSGAN [9] 0.5321 0.5288 0.0049 0.4794
FaceSwap [7] 0.9930 0.9928 0.9929 0.0070
Deepfakes [1] 0.9941 0.9939 0.9940 0.0059

Table 2. Face Forgery Detection results of FF++ on fake faces
produced by, reporting in AUC (Area under the ROC Curve), AP
(Average Precision), F1 measure, and MSE (Mean Square Error).
Values underlined are from [8], others are computed following the
same protocol.

Figure 2. Qualitative results of the ablation experiments.

detector

FaceShifter metrics
AUC AP F1 MSE

FF++ [10] 0.5222 0.5228 0.0047 0.4805
FF++ (further trained) 0.5609 0.5585 0.0041 0.3959

Table 3. Face Forgery Detection results on manipulated videos [8]
with detectors the original FF++ model and the further trained
FF++ using our swapped results. Values underlined are from [8],
others are computed following the same protocol.

4. Broader Impact
As mentioned in the main paper, Deepfakes may cause

threats to the public. Therefore, we further discuss ways to
prevent it from being misused according to our work.
Stay on top of the latest Deepfake technologies. To build
good detection algorithms, it is crucial to first know the fea-
tures of various manipulation algorithms. And developing
uniform standards to record recent progress can facilitate
the track of the latest technologies. Recent work [10] col-
lates and summarises a wide range of the latest Deepfake
developments. Such work is a great help for researchers to
understand current Deepfake technologies and develop bet-

ter strategies for forgery detection.
Collect fake data to develop better forgery detectors.
One efficient way to prevent the misuse of Deepfakes is us-
ing forgery detectors to automatically identify fake data. As
current forgery detection algorithms are mainly data-driven,
it is shown in recent studies that using various Deepfake
data from a different manipulated method as training data
can improve the global performance and robustness of de-
tection algorithms. Therefore, it is highly suggested that
researchers expand their training set with the latest Deep-
fake data and increase the data variance.
Our contributions. Apart from proposing the efficient in-
formation disentangling and swapping method to improve
the performance of face swapping, we are also striving to
mitigate the potential harms of Deepfakes: (i) We are build-
ing a new Deepfake dataset synthesized by our method to
help improve the data-driven forgery detectors. (ii) We
commit to supporting the development of Deepfake detec-
tion algorithms in all possible ways, including but not lim-
ited to summarizing the latest Deepfake methods and devel-
oping novel forgery detectors.

References
[1] Deepfakes, Accessed: 2020-09-21. https://github.

com/deepfakes/faceswap.
[2] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos

Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In CVPR, 2019.

[3] Kai-Ming He, Xiang-Yu Zhang, Shao-Qing Ren, and Jian
Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In ICCV, 2015.

[4] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of GANs for improved quality, stability,
and variation. In ICLR, 2018.

[5] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019.

[6] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1703.00810,
2017.

[7] Iryna Korshunova, Wenzhe Shi, Joni Dambre, and Lucas
Theis. Fast face-swap using convolutional neural networks.
In ICCV, 2017.

[8] Lingzhi Li, Jianmin Bao, Hao Yang, Dong Chen, and Fang
Wen. Advancing high fidelity identity swapping for forgery
detection. In CVPR, 2020.

[9] Yuval Nirkin, Yosi Keller, and Tal Hassner. Fsgan: Subject
agnostic face swapping and reenactment. In ICCV, 2019.

[10] Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Chris-
tian Riess, Justus Thies, and Matthias Nießner. FaceForen-
sics++: Learning to detect manipulated facial images. In
ICCV, 2019.

[11] Karl Schulz, Leon Sixt, Federico Tombari, and Tim Land-
graf. Restricting the flow: Information bottlenecks for attri-
bution. In ICLR, 2020.

https://github.com/deepfakes/faceswap
https://github.com/deepfakes/faceswap

Figure 3. The network architecture of InfoSwap.

Algorithm 1 Training algorithm for InfoSwap.
Input: {Xs}N , {Xt}N , N is the size of training set.
Require: Initialize IIB (with hIBi(·), i = 1, · · · , 10), AII (with Tθi(·), i = 1, · · · , 8), Decoder (denoted as dec(·)) and Discriminator

(denoted as D(·)) with values sampled from normal distribution [3];
Require: Load pre-trained face recognition model (denoted as f(·));
Require: Pre-calculated mean µRi and std. σRi values of Ri, i = 1, · · · , 10.
1: while not converged do
2: sample mini-batch {xs}B , {xt}B
3: # I. Feed Forward:
4: {x}B ← {xs}B ||{xt}B . ·||· denotes concatenate operation.
5: zid, {R1, · · · , Rm} ← f({x}B) . # (i) get original identity embedding and m internal features in one go.
6: zsid = zid[: B], ztid = zid[B :]
7: Rsi = Ri, Rti = Ri[B :] . calculate 2×B for source and target together.
8: Linfo ← 0, Lrecog ← 0
9: z̃id ← 0

10: for i = 1, 2, · · · , 10 do
11: λi ← hIBi(R1, · · · , R10)
12: εi ← N (µRi , σ

2
Ri

)
13: Zi ← λiRi + (1− λi)εi . # (ii) compress features.
14: z̃id ← z̃id + fIBi({x}B) . identity compressed by IBi alone: replace Ri by Zi.
15: Linfo ← Linfo + I[Zi, Ri] . # calculate information bottleneck losses.
16: end for
17: Linfo ← Linfo/10
18: z̃id ← z̃id/10
19: Lrecog ← 1− cos〈z̃id, zid〉
20: z̃sid ← z̃id[: B], z̃tid ← z̃id[B :]
21: λsi ← λi[: B], λti ← λi[B :]
22: f ti ← λtiε

s
i + (1− λti)Rti , εsi ∼ N (µRs

i
, σ2
Rs

i
) . # (iii) get disentangled perceptual features

23: f̃ ti ← dec(f ti), λ̃ti ← dec(λti), i = 1, 2, · · · , 8
24: Output: Ys,t ← AII(z̃sid, {f̃ ti }8, {λ̃ti}8) . # (iv) generate swapped face
25: z̃id({Ys,t}B)←

∑10
i=1 fIBi({Ys,t}B)/10

26: Lpos ← − cos〈z̃id({Ys,t}B), z̃sid〉
27: Lneg ← [cos〈z̃id({Ys,t}B), z̃sid〉 − cos〈z̃sid, z̃tid〉]

2

28: Licl ← Lpos + Lneg . # (v) calculate ICL
29: LIB ← αLinfo + β(Lrecog + Licl)
30: Lper ← 0

31: {RYs,t

1 , · · · , RYs,t
m } ← f({Ys,t}B)

32: for i = 1, 2, · · · , 10 do
33: fi(Ys,t)← λtiε

s
i + (1− λti)R

Ys,t

i

34: end for
35: {f̃i(Ys,t)}8 ← dec({fi(Ys,t)}10, {λti}10)
36: Lper ←

∑8
i=1[f̃i(Ys,t)− f̃ ti]2/8 . # (vi) calculate perceptual loss

37: With no grad: {f̃si }8 ← dec({λsi εti + (1− λsi)Rsi }10), εti ∼ N (µRt
i
, σ2
Rt

i
), {λ̃si}8 ← dec({λsi}10)

38: RequiresGrad(θ)← False for θ in AII.parameters()
39: x̂s ← AII(z̃Ys,t

id , {f̃si }8, {λ̃si}8)
40: RequiresGrad(θ)← True for θ in AII.parameters() . to make all BP gradient calculated only after passing Ys,t
41: Lcyc ← ‖xs − x̂s‖1 . # (vii) calculate cycle-consistency loss
42: LGadv ← −E(Xs,Ys,t)[log(sigmoid(D(Ys,t)−D(Xs)))] . # (viii) calculate adversarial loss
43: # II. Update parameters of IIB, AII and Decoder (Θg) with learning rate lrg:
44: LGobj. ← LIB + β1Ladv + β2Lper + β3Lcyc . Total Loss for generation
45: ∇Θg ← ∇LGobj.
46: Θg ← Θg + lrg · Adam(∇Θg, 0.001, 0.999)
47: # III. Update parameters of Discriminator (Θd) with learning rate lrd:
48: LDadv ← −E(Xs,Ys,t)[log(sigmoid(D(Xs)−D(Ys,t)))]

49: ∇Θd ← ∇LDadv
50: Θd ← Θd + lrd · Adam(∇Θd, 0.001, 0.999)
51: end while

Figure 4. More qualitative results on the test sets of FFHQ and CelebA-HQ datasets. Swapped across large gaps between different: (a)
genders, (b) ages, (c) skin colors, (d) lighting conditions.

Figure 5. Swapped results in 1024× 1024 resolution.

Figure 6. Swapped results of the same gender.

Figure 7. Swapped results of celebrities.

Figure 8. Swapped results of stills from movie scenes.

