
Appendix: Panoptic Segmentation Forecasting
In this appendix, we first provide additional details on

the classes contained within Cityscapes (Sec. A). This is
followed by details deferred from the main paper for space
reasons, including a description of how odometry is used
by each component (Sec. B), formal descriptions of the
background modeling approach (Sec. C), the aggregation
method (Sec. D), used losses (Sec. E), and miscellaneous
implementation details for all model components and base-
lines (Sec. F). This is followed by additional experimen-
tal results (Sec. G), including per-class panoptic segmenta-
tion metrics as well as metrics computed on test data for
the tasks of panoptic, semantic, and instance segmentation
forecasting. Finally, we present additional visualizations of
model predictions (Sec. H).

Included in the supplementary material are videos visu-
alizing results and a few of the baselines. These are de-
scribed in more detail in Sec. H.

A. ‘Things’ and ‘Stuff’ class breakdown in
Cityscapes

The data within Cityscapes are labeled using 19 seman-
tic classes. The ‘things’ classes are those that refer to in-
dividual objects which are potentially moving in the world
and consist of person, rider, car, truck, bus, train, motorcy-
cle, and bicycle. The remaining 11 classes are the ‘stuff’
classes and consist of road, sidewalk, building, wall, fence,
pole, traffic light, traffic sign, vegetation, terrain, and sky.

B. Odometry
Cityscapes provides vehicle odometry ot at each frame

t as [vt,∆θt], where vt is the speed and ∆θt is the yaw
rate. This odometry assumes the vehicle is moving on a
flat ground plane with no altitude changes. For background
forecasting (Sec. 3.1.2), a full 6-dof transform Ht from
frame t and the target frame T+F is required for projecting
the 3d semantic point cloud (m̃B

t , d̃
B
t ).

To derive Ht, we use the odometry readings o1,...,T+F

from frame t to target frame T + F , the time difference be-
tween consecutive frames ∆t1,...,T+F , and the camera ex-
trinsics Hcam

veh (i.e., transformation from the vehicle’s coor-
dinate system to the camera coordinate system) provided by
Cityscapes. First, we compute the 3-dof transform between
consecutive frames t and t + 1 from ot and ∆tt+1 by ap-
plying a velocity motion model [60], typically applied to a
mobile robot. More specifically,

θt = ∆θt ·∆tt+1, (11)
rt+1 = vt/(∆θt), (12)

xt+1 = rt+1 · sin θt, (13)
yt+1 = rt+1 − rt+1 · cos θt, (14)

Figure 6. ‘Stuff’ forecasting is achieved in two steps. First, for
each input frame t ∈ {1, . . . , T} given depth map dBt and ego-
motion, project the semantic map mB

t for all the background pix-
els on to frame T +F . Note the sparsity of the projected semantic
maps. Second, we apply a refinement network to complete the
background segmentation.

where (xt+1, yt+1) is the location of the vehicle at time t+1
treating the vehicle at time t as the origin (x-axis is front, y-
axis is left, and z-axis is up), and θt is the rotation of the
vehicle at time t along the z-axis. We then extend (x, y, θ)
into a 6-dof transform Ht+1

t , and apply the camera extrin-
sicsHcam

veh to obtain the transform of the cameras from frame
t to frame t+ 1 via,

Hveh,t =


cos θt − sin θt 0 xt+1

sin θt cos θt 0 yt+1

0 0 1 0
0 0 0 1

 , (15)

Ht+1
t = Hcam

veh H
−1
veh,t(H

cam
veh )−1. (16)

The final transform HT+F
t from frame t to frame T + F is

obtained by concatenating the consecutive transformsHt+1
t

for t ∈ {1, . . . , T + F − 1}.
For egomotion estimation (Sec. 3.1.4), ot is used as input

for frames t ∈ {1, . . . , T} and predicted for frames t ∈
{T + 1, . . . , T + F}. For ‘things’ forecasting (Sec. 3.1.1),
the input egomotion vector consists of vt, θt, xt+1, yt+1,
and θt+1, i.e., the speed and yaw rate of the vehicle as well
as how far the vehicle moves in this time step.

C. Detail on background modelling
Here we give more details on our background modelling,

to ensure reproducibility.
The background model is summarized in Fig. 6. More

formally, the background model estimates the semantic seg-
mentation of an unseen future frame via

m̂B
T+F = ref( { proj(mt, dt,K,Ht, ut) }|Tt=1 ), (17)

where K subsumes the camera intrinsics, Ht is the 6-dof
camera transform from input frame t to target frame T +F ,
mt is the semantic estimate at frame t obtained from a pre-
trained semantic segmentation model, dt is the input depth
map at time t, and ut denotes the coordinates of all the
pixels not considered by the foreground model. Here, proj
refers to the step that creates the sparse projected semantic



map at frame T +F from an input frame t, and ref refers to
a refinement model that completes the background segmen-
tation.

The refinement model ref receives a reprojected seman-
tic point cloud (m̃B

t , d̃
B
t ) from applying proj to each input

frame at time t ∈ {1, . . . , T}. For proj, each input frame
comes with a per-pixel semantic label mt and a depth map
dt obtained through a pre-trained model. We back-project,
transform, and project the pixels from an input frame to the
target frame. This process can be summarized asxtyt

zt

 = Ht

K−1

[
ut
1

]
Dt

1

 , (18)

[
uT+F

1

]
= K

xt/ztyt/zt
1

 , (19)

m̃B
t (uT+F ) = mB

t (ut), (20)

d̃Bt (uT+F ) = zt, (21)

where ut is a vector of the pixel locations for all background
locations in the image at time t, K subsumes the camera in-
trinsics,Dt is a diagonal matrix whose entries contain depth
dt of the corresponding pixels, and uT+F is the vector con-
taining corresponding pixel locations for the image at time
T + F . We maintain the per-pixel semantic class obtained
from the frame mt, and the projected depth. Note, in this
process, if multiple pixels ut from an input frame are pro-
jected to the same pixel uT+F in the target frame, we keep
the depth and semantic label of the one with the smallest
depth value (i.e., closest to the camera).

D. Foreground and background aggregation
steps

Alg. 1 describes our aggregation steps in detail. We ini-
tialize the output using the predicted background segmen-
tation. After this, instances are sorted in reverse order of
depth, and then they are placed one by one on top of the
background.

E. Losses
Here we formally describe the losses used to train the

model.

E.1. ‘Things’ forecasting loss

For instance i we use Li
fg :=

1

Zi

T+F∑
t=T

p(t, i)
(
λSmoothL1(x̂i

t,x
i
t) + MSE(r̂it, r

i
t)
)
, (22)

where Zi =
∑T+F

t=T p(t, i) is a normalization constant and
p(t, i) equals 1 if we have an estimate for instance i in

Algorithm 1 Foreground and background aggregation
1: Input: Background semantics mB

T+F ;
Foreground segmentations mi

T+F , classes ci,
depths diT+F , i = 1, . . . , N ;

2: for (x, y) ∈ {1, . . . ,W} × {1, . . . ,H} do
3: ST+F (x, y)← [mB

T+F (x, y), 0]
4: end for
5: σ ← ArgSortDescending(d1T+F , . . . , d

N
T+F )

6: for i ∈ σ do
7: for (x, y) ∈ {1, . . . ,W} × {1, . . . ,H} do
8: if mi

T+F = 1 then
9: ST+F (x, y)← [ci, i]

10: end if
11: end for
12: end for
13: Return: future panoptic segmentation ST+F

frame t while being 0 otherwise. MSE refers to mean
squared error, i.e., MSE

(
r̂it, r

i
t)
)

:= 1
J

∑J
j=1

(
r̂it − rit

)2
,

while SmoothL1 is given by

SmoothL1(a,b) :=
1

J

J∑
j=1

SmoothL1Fn(aj ,bj) (23)

SmoothL1Fn(a, b) :=

{
1
2 (a− b)2, if |a− b| < 1,

|a− b| − 1
2 , otherwise,

(24)

where a and b are vector-valued inputs and a and b are
scalars. We use λ = 0.1, which was chosen to balance
the magnitudes of the two losses.

E.2. ‘Stuff’ forecasting loss

To train the refinement network we use the cross-entropy
loss

Lbf := 1∑
x,y 1bg

t [x,y]

∑
x,y

1bg
t [x, y]

∑
c

mi∗
t (x, y, c) log

(
pit(x, y)

)
.

(25)

Here, 1bg
t [x, y] is an indicator function which specifies

whether pixel coordinates (x, y) are in the background of
frame t, and mi∗

t (x, y, c) = 1 if c is the correct class for
pixel (x, y) and 0 otherwise. Other variables are as de-
scribed in the main paper.

F. Further implementation details
F.1. ‘Things’ forecasting model

For instance detection, we use the pretrained MaskR-
CNN model provided by Detectron21, which is first trained

1https://github.com/facebookresearch/detectron2

https://github.com/facebookresearch/detectron2


on the COCO dataset [39] and then finetuned on Cityscapes.
For all detections, we extract the object bounding box and
the 256×14×14 feature tensor extracted after the ROIAlign
stage. The detected instances are provided to DeepSort [65]
to retrieve associations across time. We use a pre-trained
model2 which was trained on the MOT16 dataset [47]. The
tracker is run on every 30 frame sequence once for every
‘things’ class (in other words, the tracker is only asked to
potentially link instances of the same class as determined
by instance detection).

Both GRUenc and GRUdec are 1-layer GRUs with a hid-
den size of 128. Both ConvLSTMenc and ConvLSTMenc are
2-layer ConvLSTM networks using 3 × 3 kernels and 256
hidden channels. fenc,b and fbbox are 2-layer multilayer per-
ceptrons with ReLU activations and a hidden size of 128.
fbfeat is a linear layer that produces a 16-dimensional output,
which is then copied across the spatial dimensions to form
a 16× 14× 14 tensor and concatenated with the mask fea-
ture tensor along the channel dimension before being used
as input. fmfeat is a 1× 1 convolutional layer producing a 8
channel output, which is followed by a ReLU nonlinearity
and a linear layer which produces a 64-dimensional output
vector. fenc,m and fmask are 1 × 1 convolutional layers pro-
ducing a 256 channel output. MaskOut is the mask head
from MaskRCNN, and consists of 4 3 × 3 convolutional
layers with output channel number 256, each followed by
ReLU nonlinearities, a 2 × 2 ConvTranspose layer, and a
final 1 × 1 convolutional layer that produces an 8 channel
output. Each channel represents the output for a different
class, and the class provided as input is used to select the
proper mask. The Mask Head’s parameters are initialized
from the same pre-trained model as used during instance
detection and are fixed during training.

During training, individual object tracks were sampled
from every video sequence and from every 18-frame sub-
sequence from within each video. The tracking model we
used frequently made ID switch errors for cars which the
ego vehicle was driving past; specifically, the tracker would
label a car visible to the camera as being the same car that
the recording vehicle drove past a few frames previously.
This had the effect of causing some tracks to randomly
“jump back” into the frame after having left. In an attempt
to mitigate these errors, instance tracks belonging to cars
were truncated if this behavior was detected in an input se-
quence. Specifically, if a given car track, after being located
within 250 pixels from the left or right edge of a previous
input frame, moved towards the center of the frame by more
than 20 pixels in the current frame, it was discarded for this
and all future frames. Since this led to incomplete tracks
in some cases, car tracks located within 200 pixels from the
left or right side of the frame were augmented by estimating
their velocity from previous inputs and linearly extrapolat-

2https://github.com/nwojke/deep_sort

ing their locations until they were no longer present in the
frame.

We trained for 200000 steps using a batch size of 32, a
learning rate of 0.0005, and the Adam optimizer. Gradi-
ents were clipped to a norm of 5. The learning rate was de-
cayed by a factor of 0.1 after 100000 steps. During training,
ground-truth odometry was used as input; odometry predic-
tions were used for future frames for all evaluations except
for the ablation which is listed as having used ground-truth
future odometry. Bounding box features and odometry were
normalized by their means and standard deviations as com-
puted on the training data. During evaluation, we filtered
all sequences which did not detect the object in the most
recent input frame (i.e., T = 3), as this led to improved
performance.

F.2. ‘Stuff’ forecasting model

We use the model described by Zhu et al. [73] with the
SEResNeXt50 backbone and without label propagation as
our single frame semantic segmentation model3. For our re-
finement model, we use a fully convolutional variant of the
HarDNet architecture [7] which is set up to predict seman-
tic segmentations4. We initialize with pre-trained weights
and replace the first convolutional layer with one that ac-
cepts a 60 channel input (3 input frames, each consisting
of a 19 channel 1-hot semantic input and a 1 channel depth
input). We trained a single model for both the short- and
mid-term settings; hence, for each sequence in the training
data, we use two samples: one consisting of the 5th, 8th,
and 11th frames (to represent the mid-term setting) and one
consisting of the 11th, 14th, and 17th frames (to represent
the short-term setting), where frame 20 was always the tar-
get frame. During training, ground-truth odometry was used
to create the point cloud transformations; during evaluation
unless specified otherwise, the predicted odometry was used
for future frames.

We trained the ‘stuff’ forecasting model for 90000 steps
using a batch size of 16, a learning rate of 0.002, weight
decay 0.0001, and momentum 0.9. Gradients were clipped
to a norm of 5. The learning rate was decayed by a factor
of 0.1 after 50000 steps. During training, we randomly re-
sized inputs and outputs between factors of [0.5, 2] before
taking 800×800 crops. Input depths were clipped to lie be-
tween [0.1, 200] and normalized using mean and standard
deviation computed on the training set.

F.3. Egomotion estimation

The egomotion estimation model takes as input ot :=
[vt, θt], t ∈ {1, . . . , T}, where vt is the speed and θt is
the yaw rate of the ego-vehicle. It is tasked to predict

3https : / / github . com / NVIDIA / semantic -
segmentation/tree/sdcnet

4https://github.com/PingoLH/FCHarDNet

https://github.com/nwojke/deep_sort
https://github.com/NVIDIA/semantic-segmentation/tree/sdcnet
https://github.com/NVIDIA/semantic-segmentation/tree/sdcnet
https://github.com/PingoLH/FCHarDNet


All Things Stuff
PQ SQ RQ PQ SQ RQ PQ SQ RQ

Flow 25.6 70.1 34.0 12.4 66.3 18.1 35.3 72.9 45.5
Hybrid [59] (bg) and [43] (fg) 29.4 69.8 38.5 18.0 67.2 25.7 37.6 71.6 47.8
Ours 35.7 72.0 46.5 24.0 69.0 33.7 44.2 74.2 55.8

Table 5. Panoptic segmentation forecasting evaluated on the Cityscapes test set, mid-term. Higher is better for all metrics.

Short term: ∆t = 3 Mid term: ∆t = 9
Accuracy (mIoU) All MO All MO

F2MF [53]∗ 70.2 68.7 59.1 56.3
Ours 67.3 58.8 57.7 48.8

Table 6. Semantic segmentation forecasting results on the
Cityscapes test dataset. Baseline numbers, are from [53]; the
* indicates training on both train and validation data. Higher is
better for all metrics.

ôT+1, . . . , ôT+F . Unlike the other components of our ap-
proach, the egomotion estimation model does not subsam-
ple inputs – hence, it takes 9 steps of input and predicts the
odometry for the next 9 steps. GRUcam is a 1-layer GRU
with a hidden size of 128. fcam is a linear layer.

We trained the egomotion estimation model for 80000
steps using a batch size of 32, a learning rate of 0.0005, and
the Adam optimizer. Gradients were clipped to a norm of
5. Inputs were normalized using means and standard devia-
tions computed on the training set.

F.4. Training and Inference time

During inference, our unoptimized code makes a pre-
diction in about 700ms using one 32GB NVIDIA V100.
Additional engineering efforts can reduce this time further.
Training the foreground and background models takes ap-
proximately 12 and 18 hours, respectively, on the same
GPU.

F.5. ORB-SLAM details

We ran ORB-SLAM3 [6]5 with stereo images to ob-
tain ego-motion in our ablation study. Each sequence (30
frames) is treated as its own SLAM session providing 6-dof
poses for all the frames in the sequence. We then converted
the poses into speed and yaw rate for each frame according
to their timestamps.

F.6. Monocular depth details

Our experiments in Tab. 2 show we can still achieve good
performance even if we don’t have stereo pairs at test time,
through the use of a monocular depth estimation frame-
work. For this, we used the codebase of [19] to finetune
a model for depth estimation on Cityscapes.

We initialised this model with the authors’ weights
trained on the KITTI dataset [18]. We used their high-
resolution Resnet-18 model, which was trained with a

5https://github.com/UZ-SLAMLab/ORB_SLAM3

Short term: ∆t = 3 Mid term: ∆t = 9
AP AP50 AP AP50

F2F [43] - - 6.7 17.5
Ours 14.9 31.3 8.4 19.8

Table 7. Instance segmentation forecasting on the Cityscapes
Test dataset. Higher is better for all metrics.

KITTI-image input size of 1024 × 320 pixels6. We then
finetuned this model on the training split of the Cityscapes
dataset. For Cityscapes finetuning we trained on the full
Cityscapes input image without any cropping, and we
trained using self-supervised reprojection losses using the
stereo pairs as supervision (we did not use the monocu-
lar sequences, though we expect including these at training
could further improve scores). We resized our Cityscapes
input images to 640 × 320 pixels at both training and test
time. We used a smaller image input size than the model
was trained for on KITTI to account for the change in im-
age aspect ratio between KITTI and Cityscapes. We trained
our model with Adam [31] for 15 epochs with a learning
rate of 1e− 4 and then 15 epochs with 1e− 5.

F.7. Flow Baseline

To implement this model, we warp the panoptic segmen-
tation computed by the oracle model on the most recently
seen input frame using optical flow. Specifically, we com-
pute the forward optical flow between the most recent input
frames, i.e., between frames for t ∈ {2, 3}, using the CSS
configuration of the model introduced by Ilg et al. [27]7. We
then iteratively warp the inputs via the following procedure:
first, we warp the optical flow using itself (to align it with
the current frame), and then we warp the current panoptic
segmentation using the resulting flow. For short-term, this
is done once, and for mid-term, this is done three times.
This was the best performing procedure we tried. Negating
reverse optical flow, extrapolating the flow linearly for the
mid-term setting, or a combination of the two resulted in
worse performance.

F.8. Hybrid Semantic/Instance Forecasting Model

The semantic segmentation forecasting component of the
hybrid baseline consists of the model developed by Ter-
williger et al. [59], which anticipates the optical flow be-

6Available from https : / / github . com / nianticlabs /
monodepth2

7https://github.com/NVIDIA/flownet2-pytorch

https://github.com/UZ-SLAMLab/ORB_SLAM3
https://github.com/nianticlabs/monodepth2
https://github.com/nianticlabs/monodepth2
https://github.com/NVIDIA/flownet2-pytorch


∆t = 3 ∆t = 9
PQ SQ RQ PQ SQ RQ

Ours 49.0 74.9 63.3 36.3 71.3 47.8
a) fg w/ independent RNNs 49.2 75.2 63.3 35.7 71.2 46.9
b) fg w/o velocity features 49.2 75.0 63.4 35.7 71.2 47.0

Table 8. Additional ablations on Panoptic segmentation forecast-
ing using Cityscapes. Higher is better for all metrics. All ap-
proaches use predicted future odometry.

tween the most recently seen input frame and the target
frame and uses it to warp the predicted semantic segmen-
tation for that input frame. The authors originally evaluated
on four settings: ∆t = 1, ∆t = 3, ∆t = 9, and ∆t = 10.
Their official implementation8 provides pre-trained models
for ∆t = 3 and ∆t = 10; these are what we use for our
short- and mid-term settings, respectively. Note, that Ter-
williger et al. [59] don’t provide a model for ∆t = 9 or
the code they used to train their models. Despite the fact
that the ∆t = 10 setting is marginally more challenging
than the ∆t = 9 setting, Terwilliger et al. report better per-
formance on the ∆t = 10 setting [59], which is why we
felt comfortable using this approach for our hybrid model.
The best performing semantic segmentation forecasting ap-
proach, developed by Šarić et al. [53], did not have code or
models available at time of submission.

The instance segmentation forecasting component of the
hybrid baseline consists of the model developed by Luc et
al. [43], which anticipates the image features for the target
frame autoregressively. We use their official implementa-
tion9, which provides pre-trained models for both the short-
and mid-term settings.

Predictions are fused by ‘pasting’ all ‘thing’ class predic-
tions made by the instance segmentation forecasting model
on top of the ‘stuff’ class predictions made by the semantic
segmentation forecasting model. Note that this leaves some
pixels without predictions; this occurs for pixels where the
semantic forecasting model predicted a ‘thing’ class but the
instance forecasting model did not predict a ‘thing’ class.
We implemented a version of this model which filled in
these gaps with the closest ‘stuff’ class predicted by the se-
mantic forecasting model, but this performed worse.

G. More Experimental Results

Tab. 5 provides the panoptic segmentation forecasting
metrics computed on the Cityscapes test dataset for our
method as well as the flow and hybrid baselines for the mid-
term setting. We outperform both other approaches on this
data as well for all metrics.

Tab. 6 shows the semantic segmentation forecasting met-
rics computed on the Cityscapes test dataset for our ap-

8https://github.com/adamtwig/segpred
9https://github.com/facebookresearch/instpred

proach as well as F2MF [53]. F2MF outperforms our ap-
proach on the test data; however, note that the F2MF model
used for test evaluation was trained on both the training and
validation dataset, while we only train our model on the
training dataset. Moreover, F2MF does not predict instance
IDs for ‘thing’ classes, meaning that this model cannot be
used for panoptic segmentation.

Tab. 7 provides the instance segmentation forecasting
metrics computed on the Cityscapes test dataset for our ap-
proach as well as F2F [43]. Our approach outperforms F2F
on the mid-term setting. Luc et al. do not provide an evalu-
ation on the short-term setting, so we cannot directly com-
pare against those results here.

Tab. 8 presents a few additional ablations analyzing the
impact of our modeling choices: a) fg w/ independent
RNNs ‘disconnects’ the bounding box and appearance mask
RNNs in the encoder and decoder so they do not use the
outputs of fmfeat and fbfeat as input, and b) fg w/o veloc-
ity features only uses location features as input, i.e., xi

t :=
[cx, cy, w, h, d]. a) shows that joint modeling of instance
motion and appearance mask leads to better performance at
longer timescales. b) shows that guiding the network with
temporal information is also important to improve longer-
term forecasting.

Tables 9-14 show the per-class breakdown of all panoptic
segmentation metrics presented in Tab. 1. The results shown
in Tab. 1 consist of the average metric values computed over
the set of classes in Cityscapes. For most classes, we outper-
form all other approaches on panoptic quality and recogni-
tion quality for both short- and mid-term. We additionally
outperform all other approaches for many classes on seg-
mentation quality, and outperform all other approaches on
average.

H. Visualization
Fig. 7 presents visualizations for the short term setting

for the sequences present in Fig. 4. Additional sequences
are visualized for the mid-term setting in Fig. 8, and the
corresponding short term sequences are presented in Fig. 9.

Included with the supplementary material are some
videos visualizing predictions. Each displays the most re-
cently seen input frame in the top half and the prediction 9
frames in the future from the last seen frame (i.e., for the
mid-term setting). The folder ‘short videos’ contains
visualizations for some of the sequences present within the
Cityscapes validation dataset. The folder ‘long videos’
contains visualizations for a longer sequence taken from the
unfiltered Frankfurt sequence provided with Cityscapes.

https://github.com/adamtwig/segpred
https://github.com/facebookresearch/instpred
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Deeplab (Oracle)† 97.9 78.2 88.5 29.4 38.9 60.0 55.6 74.5 89.5 36.1 87.9 50.8 46.4 67.3 51.5 66.6 37.8 44.2 44.1 60.3

Deeplab (Last seen frame) 94.3 52.4 71.1 11.3 19.4 6.1 12.9 15.0 72.1 16.9 72.7 10.3 8.0 29.6 35.1 51.7 24.2 9.8 7.9 32.7
Flow 95.6 61.5 79.8 17.3 28.6 8.7 26.2 36.8 80.7 26.9 79.7 21.0 14.0 43.4 40.6 56.8 26.7 23.2 18.7 41.4
Hybrid [59] (bg) and [43] (fg) 96.2 63.4 81.4 23.1 23.7 7.1 19.1 36.9 82.3 20.3 79.8 26.8 21.8 46.4 42.2 60.0 41.4 25.6 22.5 43.2
Ours 96.2 66.1 83.5 26.1 27.4 31.7 37.0 49.9 84.8 26.1 82.0 31.8 31.5 48.8 42.2 61.2 47.0 31.4 27.3 49.0

Table 9. Per-class results for Panoptic Quality on Cityscapes validation dataset (short-term).
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Deeplab (Oracle)† 97.9 78.2 88.5 29.4 38.9 60.0 55.6 74.5 89.5 36.1 87.9 50.8 46.4 67.3 51.5 66.6 37.8 44.2 44.1 60.3

Deeplab (Last seen frame) 90.4 32.5 57.6 7.6 10.6 4.6 8.9 7.4 55.1 8.8 57.3 5.3 2.5 13.2 19.2 27.3 10.1 4.7 3.0 22.4
Flow 90.5 35.8 66.2 7.7 15.0 4.6 11.9 11.1 65.6 11.6 64.4 5.9 2.5 19.0 21.5 27.7 13.5 11.8 5.3 25.9
Hybrid [59] (bg) and [43] (fg) 93.2 44.9 70.5 12.4 14.8 1.2 8.0 10.8 69.7 13.9 67.2 8.0 4.5 27.3 33.5 41.7 27.9 8.3 6.1 29.7
Ours 93.9 50.8 76.4 18.2 19.9 8.7 18.7 28.5 77.0 18.6 72.7 16.2 12.0 33.3 36.1 53.0 29.8 14.1 12.6 36.3

Table 10. Per-class results for Panoptic Quality on Cityscapes validation dataset (mid-term).
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Deeplab (Oracle)† 98.0 85.6 90.5 74.3 74.8 69.7 73.5 80.1 90.9 75.7 92.6 76.0 70.8 84.2 88.4 90.8 87.6 73.8 72.1 81.5

Deeplab (Last seen frame) 94.4 71.5 78.8 65.4 65.6 67.0 68.3 67.4 77.8 67.7 83.0 64.4 60.1 69.2 74.7 76.7 75.7 62.7 63.4 71.3
Flow 95.6 76.0 83.2 68.5 68.3 65.0 65.9 67.3 83.4 69.1 86.6 65.6 61.4 75.8 77.5 80.0 74.1 66.1 64.4 73.4
Hybrid [59] (bg) and [43] (fg) 96.3 77.2 84.9 70.0 69.0 59.5 63.6 65.9 84.6 70.8 86.5 66.8 61.9 77.2 80.3 83.1 80.5 65.6 63.8 74.1
Ours 96.3 77.0 86.3 71.1 69.4 61.4 65.4 70.6 86.6 71.3 88.3 67.7 63.8 77.7 81.4 81.4 74.8 67.6 65.8 74.9

Table 11. Per-class results for Segmentation Quality on Cityscapes validation dataset (short-term).
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Deeplab (Oracle)† 98.0 85.6 90.5 74.3 74.8 69.7 73.5 80.1 90.9 75.7 92.6 76.0 70.8 84.2 88.4 90.8 87.6 73.8 72.1 81.5

Deeplab (Last seen frame) 90.7 68.2 72.6 63.4 62.4 66.1 72.7 73.0 71.2 64.0 77.3 63.7 61.3 66.8 62.9 70.8 74.3 56.4 64.4 68.5
Flow 90.8 68.6 76.0 66.1 64.1 64.1 69.0 67.2 75.0 64.5 78.5 63.5 60.4 69.1 70.2 74.3 75.8 60.2 63.0 69.5
Hybrid [59] (bg) and [43] (fg) 93.3 69.7 77.9 66.6 65.3 59.9 62.9 61.9 76.9 65.1 79.6 63.7 58.4 71.5 72.6 72.2 73.7 62.1 60.6 69.1
Ours 94.1 71.3 81.5 68.4 66.8 59.0 64.1 65.1 80.9 68.1 83.0 64.3 61.4 73.4 76.9 76.1 74.4 62.5 62.9 71.3

Table 12. Per-class results for Segmentation Quality on Cityscapes validation dataset (mid-term).
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Deeplab (Oracle)† 99.9 91.3 97.8 39.5 52.1 86.1 75.6 93.0 98.5 47.7 94.9 66.9 65.5 80.0 58.2 73.4 43.1 59.9 61.2 72.9

Deeplab (Last seen frame) 99.9 73.4 90.2 17.3 29.7 9.1 18.9 22.2 92.7 25.0 87.6 16.0 13.2 42.8 47.0 67.4 32.0 15.6 12.4 42.7
Flow 99.9 81.0 95.9 25.2 41.9 13.4 39.7 54.7 96.8 39.0 92.0 32.1 22.8 57.3 52.4 71.0 36.0 35.1 29.0 53.4
Hybrid [59] (bg) and [43] (fg) 99.9 82.1 95.8 33.0 34.4 11.9 30.0 56.0 97.3 28.8 92.2 40.1 35.3 60.2 52.6 72.2 51.4 39.1 35.3 55.1
Ours 99.9 85.8 96.7 36.7 39.4 51.6 56.6 70.7 97.9 36.6 92.9 47.0 49.3 62.9 51.9 75.2 62.9 46.3 41.5 63.3

Table 13. Per-class results for Recognition Quality on Cityscapes validation dataset (short-term).
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Deeplab (Oracle)† 99.9 91.3 97.8 39.5 52.1 86.1 75.6 93.0 98.5 47.7 94.9 66.9 65.5 80.0 58.2 73.4 43.1 59.9 61.2 72.9

Deeplab (Last seen frame) 99.7 47.6 79.3 12.1 17.0 7.0 12.2 10.1 77.4 13.7 74.1 8.3 4.2 19.8 30.6 38.5 13.6 8.3 4.7 30.4
Flow 99.7 52.2 87.1 11.7 23.4 7.2 17.3 16.5 87.4 18.0 82.1 9.2 4.2 27.5 30.6 37.3 17.8 19.6 8.4 34.6
Hybrid [59] (bg) and [43] (fg) 99.9 64.5 90.4 18.7 22.7 2.1 12.7 17.4 90.5 21.4 84.4 12.5 7.7 38.2 46.2 57.9 37.8 13.4 10.1 39.4
Ours 99.7 71.2 93.7 26.6 29.8 14.7 29.2 43.8 95.1 27.3 87.6 25.2 19.5 45.4 47.0 69.6 40.0 22.6 20.0 47.8

Table 14. Per-class results for Recognition Quality on Cityscapes validation dataset (mid-term).
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Figure 7. Short-term panoptic segmentation forecasts on Cityscapes.
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Figure 8. Additional mid-term panoptic segmentation forecasts on Cityscapes.
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Figure 9. Additional short-term panoptic segmentation forecasts on Cityscapes.


