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1. Neural dressing
1.1. Model details

The Neural Dressing model consists of two elements: the
neural texture and the renderer network.

The neural texture is a three-dimensional 512x512x 16
tensor. During training we store it as an array of severn
mipmaps (from 8p to 512p), which allows us to regular-
ize high-resolution mipmaps and encourage low-resolution
ones to store more information (as was proposed in [18]).

The renderer network R is a standard U-net model
from [19] with Resnet-16 encoder backbone. This network
processes the neural texture warped onto the SMPL-X mesh
along with additional two channels containing mesh with
UV texture coordinates. The main part of the network out-
puts a 16-channel tensor which is then passed through two
parallel shallow convolutional networks. The first of these
networks generates the three-channel RGB image, while the
second produces a three-channel segmentation mask. The
first channel of the segmentation is the foreground mask,
while the second and the third are hands and face masks
respectively (which are used for additional supervision).

1.2. Supervision for video-based training

As we train our Neural Dressing model on high-
resolution videos from AzurePeople dataset, it allows us
to use several supervisory signals. Apart from standard
VGG19 perceptual loss £, between the output images
and the ground truth frames, several other loss functions
were used.

We have obtained three-channel segmentation maps (as
described above) using Graphonomy network [4] and then
refined it with Photoshop’s chromakey feature. These seg-
mentation maps M3 are used to enforce rendering network
to generate realistic foreground masks as well as to learn to
distinquish face and hands regions for better visual quality
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of theese regions. For segmentation supervision, Dice loss
is used: )
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where Ms is the predicted segmentation and © is Hadamard
product.

To ensure realistic high-frequency details, a set of dis-
criminators was used. The first discriminator distinguishes
between real and fake samples of full images. The other two
discriminators are given image crops around face and head
regions respectively. The crops are calculated using Open-
Pose keypoint detector [3]. The cropped regions are also
masked by respective channels in segmentation tensors. All
discriminators employ PatchGAN structure with [2 adver-
sarial losses:
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In the equations above, Myangs and Mg are the seg-
mentation masks for hands and head regions respectively,
(]\>[handS and Mhands correspond to the generated masks).
Chands @and Cpeaq are crop operators for hands and head re-
gions. For hands, the crop for each hand is passed through



the hand discriminator separately. [ and I denote full
ground truth and generated images respectively. To enhance
face realism we also employ the VGGFace perceptual loss
£VGG Face-

The last loss term regularizes the high-resolution texture
mipmaps so that they store only high-frequency details:
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where 7(") is a mipmap of resolution 2¢, and «; has the
following values: « ={0,0,0,1,2,4,8}

i=3,9
1.3. Training procedure

In the video-based setup, the model is trained in two
phases. First, the renderer network is pretrained on all 56
people from AzurePeople dataset along with the correspond-
ing neural textures. In this phase, the renderer is learning to
convert 512p neural renders into 512p images.

H ‘ phase 1 ‘ phase 2 H

loss weights

Lygg 1 1
Loyggface 2e-1 2e-1
Esf:gm le+2 le+2
Ladv le+l le+l
»cadvface Se+1 Se+1
Ladvhands Se+1 Se+1

cmipmap 1 1

learning rates
Texture Se-2 le-3
R le-3 le-3
D full 2e-4 2e-4
Dhead 2e-4 2e-4
Dhands 2e-4 2e-4
other parameters

R optim betal Se-1 Se-1
Texture optim betal Se-1 Se-1

Table 1. Hyperparameters for both phases of video-based neural
dressing training procedure

In the second step, the network is finetuned for a sin-
gle person (either from the same dataset or completely new
one) at 1024p resolution, while the maximum resolution of
neural texture mipmaps remains 5S12p. During both steps
ADAM optimiser is used for all networks. Table 1 shows
the list of hyperparameters used during both phases.

2. Generative Textures
2.1. Architecture details

Here we describe modifications to the Neural Dressing
approach that allow us to sample human body neural tex-
ture from a generative model. In this setup we still have
the rendering network R, while the stack of neural texture
mipmaps is substituted by the generative network G.

The architecture of G closely follows the StyleGANv2
model [6]. The only modifications of the architecture of [6]
are additional inputs to several convolutional layers of the
network. We pass additional 16 channels of SMPL-X mesh
vertices spectral coordinates alongside the outputs of pre-
vious layer. This modification affects layers receiving 64p,
128p and 256p feature maps, To acquire these maps, we cal-
culate spectral coordinates for each SMPL-X mesh vertex
and then rasterize them bilinearly in the UV texture space.

The generator G outputs 16-channel 256p feature maps,
which are then warped onto the SMPL-X UV render and
passed through the renderer R, which outputs three-channel
RGB output along with one-channel foreground segmen-
tation. The latter is then modified so that at every pixel
on which the SMPL-X is projected, the value is set to one
(i.e. the projection of the SMPL-X mesh is forced to belong
to the foreground). This enforcement increases the stability
of segmentation.

Apart from R and G, we use three discriminator net-
works: Dunary, Dpinary and Dpee. All of them follows the
discriminator architecture from [6].

Dypary takes four-channel image (RGB-+foreground seg-
mentation) as an input. Dyiyary takes two such images of
the same person in different poses stacked. Dy, is given a
four-channel 128p crop of the face region.

2.2. Loss functions

For our adversarial training procedure we use the loss
from [6], adopting same non-saturating loss for discrimi-
nator outputs ‘Cadv,unm‘y, Eadv,binary and ‘Cadv,face and
the same regularization techniques, i.e. R1 regularization
for discriminators £, and path regularization for genera-
tor Epath-

We also add two new regularizations specific to our sys-
tem described in the Additional regularization paragraph
of the main paper.
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2.3. Training procedure

The training of the generative model is also split in two
phases. First, we train the pipeline to produce 256p images
and then tune them for the 512p setup, while filtering out
low resolution images from the training dataset. In both
phases, the generator GG has the same set of layers and out-
puts 256p neural textures, while the renderer R is given an
additional upsampling and several convolutional layers dur-
ing the switch of the phases. Therefore, the final version
of R takes 256p neural renders and outputs 512p images.
The discriminators Dy yqry and Dy;pqry are also augmented
with additional layers in the beginning so that they are able



to process 512p inputs. All additional layers are gradually
(progressively) introduced into the training procedure fol-
lowing [5].

loss weights
ﬁudv,unury 1
L(Ld’u,bi'n,ury 1
Eadv,face 1
Erl le+1
Lpath 2
[faugreg 1
Loyreg le+1
learning rates
G le-3
R le-4
qe le-3
Doynary 2e-3
Dbinary 2e-3
Digce 2e-3

Table 2. Hyperparameters for generative texture model training

For all networks in the pipeline we also employ equal-
ized learning rate technique introduced in [5]. Training hy-
perparameters are the same for both phases and are listed in
Table 2

3. Details about other methods

We list the methods we compare against, and provide
details about the (re)-implementations.

Textured Neural Avatars [15]. We use the models pro-
vided by the authors.

Videoavatars [2] We use the models provided by the au-
thors.

360 degree [8]. Since the authors provide only a non-
animatable mesh of a person in the A-pose, we have ren-
dered the mesh under a visually close global rotation and
then aligned the image with ground truth using an affine
warp computed from the OpenPose detections.

Octopus [1]. We use the 3D model provided by the au-
thors. We have rendered the images in the SMPL poses pro-
vided with the dataset. However due to scale mismatch the
alignment with ground truth was poor, and we therefore ap-
plied affine warping based on OpenPose as for the previous
baseline.

LWGAN [9] We use the network provided by the au-
thors. Since the method does not produce a segmentation
mask, we have replaced the color of the background pixels
with white in the input images in order to maintain consis-
tency in the comparison.

FOMM [16]. We use the networks provided by the au-
thors that was trained on TaiChi dataset (we refer to this
baseline as FOMM-TaiChi). Since our TEDX dataset dif-
fers significantly from TaiChi (stage performances vs. mar-
tial arts), we also train FOMM from scratch on the TEDX

data (the corresponding baseline is called FOMM-TEDX).
FOMM-TEDX baseline is trained on 41233 sequences each
containing eight images.

Qualitative comparison to PIFu and PIFuHD. In addi-
tion to the comparisons in the main text, we compare qual-
itatively to PIFu [13] and PIFuHD [14]. We use the net-
works provided by the authors. We use them to create 3D
models by one frontal image from PeopleSnapshot dataset
and render them from new viewpoint for comparison. Since
PIFuHD model does not produce full-body texture, we use
normals of the 3D model for its’ visualization.

We present comparison against state-of-the-art one-shot
methods on three test sequences of the TEDXPeople dataset
in Figure 1 and to PIFu and PIFuHD methods on two people
from PeopleSnapshot dataset in Figure 1.

4. Inference details

4.1. Encoders.

The encoder architecture used in all our experiments
(Fig. 3) is inspired by the pSp-architecture proposed in [11].
As a backbone we utilize EfficientNet-B7 [17] initialized
with ImageNet [12] pretrained weigths. Intermediate fea-
ture maps are aggregated with the upscaled lower resolu-
tions maps and then passed through a small map2style net-
work comprising Conv2d — ReLU — Adaptive Average
Pooling — Linear layers.

We train encoders via backpropagation with ADAM op-
timizer [7]. The learning rate is fixed to 0.001 during train-
ing.

4.2. Optimization.

The optimization part of the inference consists of four
stages: (i) the optimization of the latent vector w, (ii) the
optimization of the generator parameters h,;, (iii) the opti-
mization of the noise tensors and (iv) the direct texture opti-
mization. Each stage is defined by the number of iterations,
the learning rate and the loss weights. Table 3 summarizes
hyperparameters for each stage that we found to work best.

H ‘ Stage 1 ‘ Stage 2 ‘ Stage 3 ‘ Stage 4 H

[ Number of iterations [ 100 [ 70 [ 50 [ 100 ]

|| Learning rate | oo1 | oo0r | 01 | 015 |
LPIPS 1.0 1.0 1.0 1.0
MSE 0.5 0.5 0.5 0.5
Encoder deviation MAE 0.1 0.0 0.0 0.0
Generator parameters deviation MAE 0.0 1.0 0.0 0.0
Texture deviation MAE 0.0 0.0 0.0 0.1
Face LPIPS 0.5 1.0 0.1 2.0
Face discriminator feature matching 0.0 2.0 0.0 3.0

Table 3. Optimization hyperparameters during inference. Stages:
the optimization of latent vector w, the optimization of generator
parameters h.;, the optimization of noise tensors and the direct
optimization of texture.
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Figure 1. Comparison against state-of-the-art one-shot methods on three test sequences of the TEDXPeople dataset.

PIFuHD (normals) Ours

Figure 2. Comparison of our model with PIFu and PIFuHD in a one-shot mode. Normals are used for the visualization of PIFuHD since

their system does not infer texture. Digital zoom is recommended. Note that unlike PIFu and PIFuHD, our model produces rigged avatar
and does not require 3D models with clothing/hair during training.
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Figure 3. The encoder architecture inspired by [11]. The in-
put image is passed through the encoder convolutional back-
bone to extract intermediate feature maps of different resolutions
(4x4,8x%8,...,512x512). Each feature map except the last one
is summed up with the upscaled map from the previous level and
passed through a small map2style network to predict style vectors
at the corresponding generator resolution.

5. Ablation Study
5.1. Inference ablations

We evaluate the contributions of different losses in the
inference process. With each ablations we turn off one of
the following losses: LPIPS-loss [20] between recovered
image and input image, Mean Squared Error (MSE) be-
tween recovered image and input image, Mean Absolute
Error (MAE) on latent variables w deviation from the ini-
tialization predicted by the encoder (MAE-encoder), MAE
on generator parameters hy, deviation from the initial ones
(MAE-generator), MAE on texture deviation from the tex-
ture values (MAE-texture), LPIPS-loss [20] on face regions
of recovered and input images (LPIPS-face), feature match-
ing loss based on trained face discriminator [10] (fm-face).
We compare the ablations visually and quantitatively us-
ing four metrics: Inception Score (IS), Frechet Inception
Distance (FID), Learned Perceptual Image Patch Similarity
(LPIPS), structural similarity index measure (SSIM).

6. Additional experiment

Redressing. Our approach allows the generated people
to try on clothes from the other models. Our model allows
to replace the parts of a neural texture with parts from a dif-
ferent avatar, thus mixing visual appearance. The results of
such a redressing for three randomly selected Azure peo-
ple are shown in Figure 5. In each case, we create a hybrid
model combining the head texture from one avatar and the
non-head texture parts from the other avatar.

I ISt FID| LPIPS| SSIM? |
G-encoder
Ours (full) 1.8324 2448 0.0777 009131
No MAE-texture 1.7768 2233 0.0790 0.9134
No fm-face 1.8258 225.8 0.0780 0.9133
No LPIPS-face 1.8311 225.7 0.0794 0.9130
No MAE-generator  2.006 270.8 0.0803 0.9122
No MAE-encoder 1.8457 2399 0.0797 0.9127
No MSE 1.8314 278.1 0.0809 0.9061
A-encoder
Ours (full) 1.8077 231.3 0.0785 0.9135
No MAE-texture 1.7414 2294 0.0794 0.9131
No fm-face 1.7758 226.0 0.0799 0.9125
No LPIPS-face 1.7177 2344  0.0794 09134
No MAE-generator 1.7626 2524 0.0812 0.9129
No MAE-encoder 1.6809 252.5 0.0820 0.9129
No MSE 1.7176  338.1 0.0833  0.9096

Table 4. Ablation study for inference module of neural tex-
tures (one-shot). We use two sequences of the People Snapshot
dataset [2], taking the first frame as a source image and evaluating
on the remaining frames of the sequences. See text for discussion.
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Figure 4. Ablation study for inference module of neural textures. Upper row: full model with all losses, in the following lines we are
eliminating losses one-by-one following the order from Table 4.



Figure 5. Neural redressing. Given two avatars (left and middle), we create a hybrid (“redressed”) avatar by taking the head neural texture
from the first avatar and non-head neural texture from the second avatar.



