
A. Experiments: learning hyperparameters

We train task model with the following hyperparame-
ters for all methods and datasets: SGD optimizer with 0.9
Nesterov momentum, 1e-4 weight decay, 200 train epochs,
256 mini-batch size, cosine learning rate annealing with 5
warm-up epochs. Learning rate is 0.005 for SVHN and
0.1 for CIFAR-10/100 and ImageNet. The HO optimizer is
RMSprop with 0.01 learning rate for ImageNet and 0.05 for
others, and it uses the same schedule as the task optimizer.

Table 1. Runtime comparison of our and recently published meth-
ods, GPU hours. AutoDO results are estimated using V100 GPU.

Alg./Dataset CIFAR-10 SVHN

AA [3] 5,000 1,000
PBA [5] 5.0 1.0
FAA [8] 3.5 1.5
OHL [9] 83.3 -

DADA [7] 0.1 0.1

AutoDO, 1 epoch 0.036 0.046
AutoDO, E = 150 1.8 2.3
AutoDO, E = 50 5.4 6.8

We use only θ of penultimate fully-connected layer in (5)
with T = 5 Neumann series iterations forH−1θ approxima-
tion. The T hyperparameter is chosen from Fig. 3 ablation
study in [10]. The hyperparameter E in Alg. 1 is 100 for
ImageNet and 50 for others. The soft-label initialization
constant from Section 4.2 is α = 0.1. The evaluated archi-
tectures are ResNet-18 for ImageNet, Wide-ResNet-28-10
for CIFAR-10/100 and SVHN. We replace ReLU nonlin-
earities in all networks with CELU [1] to satisfy C1 re-
quirement in (4). While IFT in (4) is only locally defined
(‖λ− λ́‖ ≤ r1 and ‖θ − θ́‖ ≤ r2) for a fixed point (λ́, θ́),
practically, the choice of hyperparameter E and CELU sta-
bilizes optimization process in Alg. 1. In addition, there are
an attempts to extend IFT to a global case in [6, 2, 4].

We run all experiments on P100/V100 GPUs and each
one takes few hours depending on the dataset setting. Only
large-scale ImageNet experiments can take up to several
days. Table 1 presents detailed comparison between the
estimated AutoDO runtime and the reported runtimes for
other recent methods.

B. Experiments: SVHN learning curves

The additional learning curves for SVHN are showed
in Figure 1. Our AutoDO optimization starts at epoch
E = {10, 50, 150, 190}. It is evident that E = 50 hyperpa-
rameter has a minor edge over other settings, but practically
E = 150 works almost the same with 3× less computing.
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Figure 1. SVHN top-1 test accuracy (top), test loss (middle)
and train loss (bottom) learning curves for the following models
trained on a dataset with 100× class imbalance and 10% label
noise: (a) baseline, (b) FAA [8], and (c) our AutoDO with λA,W,S .
Our HO starts at epoch E = {10, 50, 150, 190}, which prevents
overfitting to the distorted train data and improves generalization
to test data.

C. Theoretical background: implicit differen-
tiation meets density matching

The gradient of expectation in (7) over two independent
distributions Q̂val

x and Q̂x is a product

∇λEQ̂val
x ,Q̂x

[Lv] = −EQ̂val
x
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[
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]
.

The Hessian Hθ itself is calculated as expectation over
Q̂x due to computational and stability reasons. It leads to a
connection to the Fisher information metric Iθ [11] as
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where ui(θ) = −∂L(i)/∂θ = ∇θ log p(yi|xi,θ(λ)) are



the Fisher scores [12] for log-likelihood loss function.
The expectation EQ̂x
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contains a second-order
derivative of the train loss L(i) = − log p(yi|xi,θ(λ)) =
− log p from (6) that can be similarly simplified to
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where the term −EQ̂x
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By substituting the above derivations, the final form
of (7) and its practical variant with equal-probability data
points can be obtained as
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