Unsupervised Learning of 3D Object Categories from Videos in the Wild

Supplementary material

1. Additional implementation details

In this section, we provide more detailed information
about the dense image descriptors ® as well as the neural
radiance field . Furthermore, we give more insights into
the training process.

1.1. Dense image descriptors

This section describes in more detail the dense pixel-wise
embeddings ®(1;) introduced in Section 3.3 in the main
paper.

For a given source image I;, the embedding field ®(I;)
is composed of 3 different types of features: 1) learned
5 - 32-dimensional dense pixel-wise features output by a
deep convolutional encoder network @y .net, 2) raw image
rgb colors I; € R3>*HXW "and 3) the segmentation mask
my € RIXH ><W.

Dense feature extractor ®y.ne. The architecture of the
U-Net inside ®y._ne; is defined as follows (a detailed visuali-
sation is present in Fig. 2). A source image [*" € R3*H*W,
masked by m* (retrieved from Mask-RCNN)), is fed into a
ResNet-50 which returns spatial features from intermediate
convolutional layers (layerl, layer2, layer3, layerd, layer5),
and the final linear ResNet layer which outputs global fea-
tures Zcnn, 1.€. non-spatial. Each feature layer including the
global one is then passed through a 1x1 convolution to equal-
ize the size of all feature channels to 32. The spatial features
are further bilinearly upsampled to the spatial size of the
source image and concatenated along the channel dimension
to create a dense embedding field ®y_net (1) € R>32XH*W,
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Figure 1: The neural radiance field W is represented by an
MLP. It takes as input the warp-conditioned embedding z(x),
the harmonic positional embedding ~(x) and to account for
view point variations the harmonic directional embedding
~(r). It returns the rgb and opacity values.

Neural radiance field U. Our scene is represented by a
neural radiance field ¥ similar to [1] with the only differ-

ence that we additionally condition the field with our warp-
conditioned ray embedding, see Fig. 1.

1.2. Training details

We trained both the U-Net encoder ®y.ne; and the neural
radiance field ¥ with Adam optimizer. We set the batch size
to 8 and the learning rate to le-4. Our method as well as
all baselines were trained on an NVIDIA Tesla V100 for
7 days. For all raymarching baselines and our method, we
shoot 1024 rays per iteration through random image pixels
in Monte-Carlo fashion. For each ray we first uniformly
sample 128 times along the ray in order to retrieve a coarse
rendering (voxel or mlp based depending on the method
used). In the second pass we sample each ray 128 times
based on probabilistic importance sampling following [1].

For the mesh baseline we shoot rays for each pixel per
iteration and use soft rasterization to predict the surface
intersection. In addition to the losses used for the other base-
lines as well as our method, we additionally use a negative
IoU loss Lj,, a Laplacian loss L;,, and smoothness loss
Ly, according to [2] and weighted them with 1.0, 19.0, 1.0
respectively.

2. Additional qualitative results

Additional qualitative results are available presented in
Fig. 4 and Fig. 3. Also, we provide more qualitative results
on our project webpage: https://henzler.github.
io/publication/unsupervised_videos/. The
page contains comparison of our method to baselines by
showing the scenes from the train-test or test subsets ren-
dered from a viewpoint that rotates around the object of
interest.

3. Test-time view ablation

Furthermore, we also provide a view ablation of our
method at test time. Recall that we randomly sample be-
tween 1 and 7 source images during training. During test
time we evaluated our method separately on 1, 3, 5 and 7
views as input. In the main paper we provide an average of
those numbers. In Table 1 we give insight into how changing
the number of source views affects performance. Not surpris-
ingly, increasing the numbers of source views consistently
improves all metrics.
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Train-test Test Train-test Test
Method 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7
Mesh 1.163 1.167 1.168 1.169 1.160 1.161 1.163 1.163 2.030 2.029 2.028 2.023 2.170 2.168 2.166 2.167
o Voxel 1.052 1.051 1.051 1.051 1.127 1.127 1.127 1.127 1.581 1.581 1.580 1.580 2.050 2.050 2.046 2.046
% Voxel+MLP 1.041 1.040 1.040 1.040 1.131 1.130 1.130 1.130 1.469 1.468 1.468 1.468 2.067 2.063 2.063 2.064
MLP 0.900 0.899 0.899 0.899 1.130 1.130 1.130 1.131 1.391 1.389 1.389 1.389 2.027 2.025 2.024 2.025
Ours 0.905 0.846 0.837 0.832 1.007 0.921 0.896 0.883 1.450 1.381 1.372 1.359 1.945 1.897 1.874 1.863
Mesh 0.599 0.599 0.599 0.598 0.598 0.598 0.598 0.598 0.601 0.604 0.605 0.606 0.556 0.556 0.556 0.556
5 Voxel 0.776 0.777 0.777 0.777 0.660 0.660 0.660 0.661 0.891 0.892 0.892 0.893 0.517 0.511 0.509 0.510
S Voxel+MLP 0.775 0.776 0.777 0.776 0.652 0.654 0.654 0.654 0.878 0.878 0.878 0.878 0.540 0.541 0.542 0.541
MLP 0.871 0.871 0.872 0.872 0.654 0.653 0.653 0.653 0.872 0.872 0.872 0.872 0.472 0.470 0.472 0.471
Ours 0.866 0.884 0.886 0.889 0.774 0.788 0.787 0.787 0.889 0.897 0.898 0.897 0.600 0.624 0.629 0.632
Mesh 5.138 5.119 5.128 5.130 5.100 5.101 5.090 5.086 1.202 1.185 1.178 1.177 1.062 1.061 1.063 1.063
s Voxel 2.150 2.141 2.140 2.141 3.069 3.064 3.067 3.065 0.591 0.590 0.585 0.583 2.133 2.181 2.207 2.200
E‘H Voxel+MLP 1.958 1.942 1.942 1.941 2.881 2.868 2.861 2.864 0.478 0.479 0.479 0.479 1.972 1979 1.968 1.968
= MLP 1.389 1.378 1.377 1.377 3.583 3.587 3.590 3.593 0.595 0.593 0.594 0.593 2.521 2.530 2.519 2.520
Ours 1.593 1.291 1.201 1.172 2.186 1.847 1.802 1.776 0.535 0.467 0.457 0.453 1.606 1.595 1.589 1.603

Table 1: We complement the evaluation of the impact of the number of source views during test time for the metrics: £ ¢S,
Ell)emh, ToU. We report results for 1, 3, 5 and 7 source images. The best result is bolded where lower is better for /Y¢C, éll)epth
and higher is better for IoU.
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Figure 2: The input to the dense feature extractor @ is a source image from a given view. It first makes use of a ResNet-50
(Pu-Net) to retrieve the layer-wise features. Then, each layer is independently fed to a 1x1 convolution followed by bilinear
upsmapling to the original input resolution. The resulting feature blocks are concatenated with the input image 7°"¢ and its
corresponding object mask m®"“. In case there are multiple source images available, this process is repeated for each of them.
Once all per-view features are obtained the warp-conditioned ray embedding is retrieved after applying the view-aggregation.
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Figure 3: In reach row, a single source image (1st column) is processed by one of the evaluated methods (Mesh, Voxel,
MLP+Voxel, MLP, Ours - columns 2 to 6) to generate a prescribed target view (last column). We show results on the test split.
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Figure 4: Reconstruction with multiple source views. The top row for each object shows all available source images

(columns 1-7) for a given target image (top right). The bottom row contains results conditioned on 1, 3, 5 or 7 source images.
In addition to the rendered new RGB views we also provide shaded surface renderings.



