Supplementary Material for ‘“Distilling Causal Effect of Data in
Class-Incremental Learning”

This Appendix includes additional explanation of causal
graphs (Section A), the detailed implementations for dif-
ferent models (Section B), and more supplementary results
(Section C).

A. Additional Explanation of Causal Graph

In the main paper, we show in detail that based on our
causal graphs for Class-Incremental Learning, (anti-) for-
getting can be explained by the causal effect of old knowl-
edge. When the current learning is independent of the old
knowledge, the causal effect of old knowledge is zero. In
this section, we supplement that the concept of indepen-
dence, which is defined in the language of probability, can
be expressed visually using the causal graph [6, 7].

A.1. Chains, Forks and Colliders

As discussed, the directed path from X to Y is called the
causal path, which denotes that X is the cause of Y. For
an unspecified causal graph, where the exogenous variables
(Ux, Uy, Uz) represent the unknown or random effects that
may alter the relationship between the endogenous variables
X, Y and Z, there are three basic configurations as shown
in Figure 1: 1) Chain: one arrow directs into, and one arrow
directs out of the middle variable. 2) Fork: two arrows
emanate from the middle variable. 3) Collider: one node
receives arrows from two other nodes.

A.2. Conditional Independence

We have rules of conditional independence in chains,
forks, and colliders, respectively. 1) conditional indepen-
dence in chains: If there is only a unidirectional path in-
tercepted by Z between X and Y, X and Y are condition-
ally independent given Z. 2) conditional independence in
forks: If X is a common cause of Y and Z, and there is
no other path connecting Y and Z, then Y and Z are inde-
pendent conditional on X. 3) conditional independence in
colliders: If Z is the collision node between X and Y, and
there is no other path between X and Y, then X and Y are
unconditionally independent, but they are dependent when
conditional on Z.

U U U U

X X X X lY
U, z U Klf XKUZV Y
Uy Y v l z z

(a) Chain (b) Fork (c) Collider

Figure 1. Illustrations of three causal graph configurations.

A.3. d-separation

In complex causal graphs, pairs of variables will have
multiple possible paths connecting them, containing a va-
riety of chains, forks, and colliders. To predict the depen-
dencies of a graphical causal model of any complexity, we
apply a criterion called d-separation (the d stands for “direc-
tional”). A general definition of d-separation is that if node
Z blocks every path between two nodes X and Y, then X
and Y are d-separated conditional on Z, that is to say, X
and Y are independent conditional on Z. To see whether
a node blocks a path, we have the following rule: node Z
blocks a path p if and only if 1) p contains a chain or a fork
where Z is the middle node, and 2) p contains a collider
node which is neither Z nor the no descendant of Z.

With d-separation, for any pair of nodes, we can deter-
mine whether they are d-separated, meaning there exists
an unblocked path between them, or d-connected, mean-
ing that all the paths between them are blocked. When a
pair of nodes X and Y is d-separated, they are definitely
independent, and thus no causal effect is observed; on the
contrary, when a pair of nodes is d-connected, we mean that
they are most likely dependent, and thus the causal effect is
non-zero.

B. More Implementation Details

In Section 5 of the main paper, we deployed our meth-
ods (DDE) on two strong baseline models: LUCIR [3] and
PODnet [2]. This section first shows the detailed implemen-
tation of these models and supplemented different weight
assignments in Section 5.2 of the main paper.

CIFAR-100 ImageNet-Sub ImageNet-Full
Methods =5 70 5 70 5 70
LUCIR 50.76 53.60 66.44 60.04 62.61 58.01
+DCE 58.53+5.77 60.06+6.46 70.30+3.86 67.81+7.77 63.81+1.20 60.56+2.55
+MER 53.55+2.79 57.25+3.65 69.81+3.37 65.54+5.50 65.52+2.91 62.15+4.14
"l? +All 59.82+9.06 60.53+6.93 70.86+4.42 68.30+8.26 66.18+3.57 62.89+4.88
& PODnet 53.38 55.97 71.43 64.90 61.01 55.36
+DCE 60.25+6.87 58.58+2.61 73.07+1.64 68.02+3.12 62.98+1.97 58.05+2.69
+MER 55.43+2.05 58.56+2.59 73.49+42.06 66.14+1.24 62.87+1.76 57.43+2.07
+All 61.47+8.09 60.08+4.11 74.59+3.16 69.26+4.36 63.15+2.14 58.34+2.98
LUCIR 61.68 58.30 68.13 64.04 65.21 61.60
+DCE 64.04+236 61.69+3.39 70.91+2.79 68.66+4.62 66.00+0.79 63.28+1.68
+MER 63.40+1.72 60.27+1.97 70.74+2.62 67.56+3.52 66.68+1.47 64.13+2.53
= +All 64.41+2.73 62.00+3.70 71.20+3.07 69.05+5.01 67.04+1.83 64.98+3.38
& PODnet 61.40 58.92 74.5 70.40 62.88 59.56
+DCE 62.43+0.83 60.19+1.27 75.76+1.26 71.31+0.91 63.56+0.68 61.32+1.76
+MER 63.40+2.00 60.44+1.52 75.26+0.76 72.53+2.13 64.00+1.12 61.67+2.11
+All 62.90+1.50 60.52+1.60 75.76+1.26 73.00+2.60 64.41+153 62.09+2.53
LUCIR 63.57 60.95 70.71 67.60 66.84 64.17
+DCE 65.18+1.61 62.04+1.09 72.22+1.51 70.14+2.54 67.05+0.21 65.28+1.11
+MER 64.43+0.86 61.88+0.93 72.13+142 69.81+2.21 67.22+0.38 65.08+0.91
N +All 65.27+1.70 62.36+1.41 72.34+1.63 70.20+2.60 67.51+0.67 65.77+1.60
:Q PODnet 64.7 62.72 75.58 73.48 65.59 63.27
+DCE 65.07+0.37 64.13+1.41 76.36+0.78 74.19+0.71 66.20+0.61 64.63+1.36
+MER 65.32+0.62 62.93+0.21 76.50+0.92 74.88+1.40 65.88+0.29 63.78+0.51
+All 65.42+0.72 63.33+0.61 76.71+1.13 75.41+1.93 66.42+0.83 64.71+1.44

Table 1. More results.

B.1. Implementation of LUCIR

Settings. We adopt a 32-layer ResNet for CIFAR100 [4]
and an 18-layer ResNet for ImageNet [I]. When adopt-
ing cosine normalization in the last layer, the ReL.U layer
in the penultimate layer is removed to allow the features to
take both positive and negative values. For all datasets, im-
ages are augmented with random crops and flips, where the
images of CIFAR100 are of size 32 x 32, and images of
ImageNet are of size 224 x 224, and no more data augmen-
tation is used.

Loss Functions. For original LUCIR, the total loss L is
composed of three items — a standard cross-entropy loss
L., a distillation loss on the features L,;s; and a mar-
gin ranking loss L,,,. In each incremental step, the dis-
tillation loss is scaled by an adaptive scaling factor A =
Abase/ Cn/Co, Where Apgse is a hyper-parameter and C,
and C,, are the number of old and current observed classes.
A increases over time. For our distillation of colliding ef-
fect (DCE), we change the calculation of L., as changing
the predicted logits to the weighted sum of the logits pre-
dicted by the current image and its neighbor images. The
backward process is preserved as the prediction logits of
neighbor images are detached from the calculation graph.

For the incremental momentum effect removal (MER), in
the class-balance finetuning stage, we add a cross-entropy
loss for bias-removed logits to learn the hyper-parameters
« and . This loss is only used for training the weights of
bias term and does not update the network.

Training Details. The training process comprises 1) net-
work training stage where the backbone and new classi-
fiers are trained, and 2) class-balance finetuning stage where
only the new classifiers are trained using balanced subsets.
In the network training stage, for CIFAR100, the learn-
ing rate starts from 0.1 and is divided by 10 after 80 and
120 epochs (160 epochs in total). For ImageNet, the learn-
ing rate also starts from 0.1 and is divided by 10 every 30
epochs (90 epochs in total). In the class-balance finetuning
stage, for both datasets, the learning rate starts from 0.01
and is divided by 10 per 10 epochs (20 epochs in total). The
networks are trained by SGD [5] with the batch size 128
and momentum 0.9, the weight decay is 5 - 10~* for CI-
FAR100 and 1-10~* for ImageNet, and A\, is set to 5 for
CIFAR100 and 10 for ImageNet.

B.2. Implementation of PODnet

Settings. Same as LUCIR, the ConvNet backbones are
ResNet-32 and ResNet-18 for CIFAR-100 and ImageNet

and the last ReLU activation is removed. Specifically, the
multi-proxies classifier [2] are composed of M original
classifiers. The image augmentation and the size of images
are the same as LUCIR.

Loss Functions. For original PODnet, the final loss L is
composed of two items — an NCA loss with the multi-
modal classifier Lysc and its proposed distillation loss
Lpop—final combining two components Lpop—spatial
and Lpop-— fia: on the feature with different types of pool-
ing, where the hyper-parameters \. and Ay are used to bal-
ance the two terms. Lpop— finai 18 also scaled by the same
adaptive scaling factor A\. The implementation of our DDE
is the same as in LUCIR.

Training Details. Similarly, the training process comprises
network training stage and class-balance finetuning stage.
For network training stage, the model is trained for 160
epochs for CIFAR100, and 90 epochs for ImageNet. The
learning starts from 0.1 and decreases following cosine an-
nealing scheduling. In the class-balance finetuning stage,
for both datasets, the learning rate starts from 0.01 and de-
creases following cosine annealing scheduling. The net-
works are trained by SGD [5] with the batch size 64 and
momentum 0.9, the weight decay is 5 - 10~* for CIFAR100
and 1 -10~* for ImageNet, \. and A ¢ issetto 3 and 1 for
CIFAR100 and 8 and 10 for ImageNet.

B.3. Different Weight Assignments

As discussed in Section 4.1 and Section 5 of the main
paper, we used a weight assignment for summing the pre-
diction logits of the current image ¢ and its n neighbor im-
ages. For the Top n strategy, we can treat the n + 1 weights
as a series as:

1 1 1
{Wi7W17"' 7Wn} - {57%7"')%}? (1)
———

n

which is simple as the neighbor images sharing the same
weights and follows the rule Eq.7. For Variant 1, we lower
the first term as 1/3, and then the remaining 2/3 is split
equally for each neighbor image. For Variant2, the weight
of each neighbor image is not the same but is calculated us-
ing their similarity with image ¢ — we first calculate the
cosine similarity of their old features, and then use the soft-
max of the similarity as the weights.

C. Additional Results

We include additional results on the effect of proposed
components individually (Table 1).

References

[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Fei Fei Li. ImageNet: a Large-Scale Hierarchical Image
Database. In CVPR, 2009. 2

(2]

(3]

(4]

(3]

(6]

(7]

Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas
Robert, and Eduardo Valle. PODNet: Pooled Outputs Distil-
lation for Small-Tasks Incremental Learning. In ECCV, 2020.
1,3

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a Unified Classifier Incrementally via
Rebalancing. In CVPR, 2019. 1

Alex Krizhevsky. Learning Multiple Layers of Features from
Tiny Images. Tech. Rep., University of Toronto, 2012. 2

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Im-
ageNet Classification with Deep Convolutional Neural Net-
works. NeurIPS, 2012. 2,3

Judea Pearl. Causality: Models, reasoning, and inference, sec-
ond edition. Causality, 2000. 1

Judea Pearl, Madelyn Glymour, and Nicholas P Jewell.
Causal inference in statistics: A primer. John Wiley & Sons,
2016. 1

