Supplementary Material for Collaborative Spatial-Temporal Modeling for
Language-Queried Video Actor Segmentation
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1. Datasets

We conduct experiments on two popular language-
queried video actor segmentation benchmark datasets. De-
tails of the two datasets are summarized as follows.

A2D Sentences [2] is an extension of the Actor-Action
Dataset [5] (A2D) with natural language descriptions for
each video. It contains 8 actions categories performed by 7
actors categories with a total number of 3, 782 videos col-
lected from YouTube. Each video has 3 to 5 frames of dense
pixel-level annotations of actors and actions for training and
evaluating segmentation performance. There are 6, 655 sen-
tences in total which describe the actors and actions con-
tained in each video. We follow the split of [2] to use 3,017
training videos, 737 testing videos and 28 unlabeled videos.

J-HMDB Sentences [2] is extended from the J-HMDB
dataset [3] which contains 21 different actions, 928 videos
and corresponding 928 sentences. All the actors in J-
HMDB dataset are humans which are annotated with 2D
articulated human puppet masks for segmentation. For each
video, one natural language query is annotated to describe
the actions performed by the actors.

2. Network Training

After obtaining the outputs of our spatio-temporal de-
coder, we append a mask head containing two convolutions
on each V} to generate foreground response map P of the
actor. In particular, we upsample V}} to the original size
of input frame to form P°. Given the ground-truth binary
mask Y at the i-th stage (i € [0, 5]), the segmentation loss

*Equal contribution
tCorresponding author

6 Computer Vision Lab, ETH Zurich

" Pazhou Lab, Guangzhou

of our model is formulated as:
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where / is the weighted binary cross entropy defined as:
((PU* ) YkY = — YR ]og(a(PYF))

— (1 =Y'")log(1 — o(PYF)). @

In the above equation, o denotes Sigmoid function and «
is the weight of foreground pixels. Ground-truth masks of
different resolutions are generated with nearest interpola-
tion from original mask Y°. The final loss of our model is
the combination of 6 losses as follows:
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where 3 is the coefficient for the i-th loss. In our imple-
mentation, 8° for loss £9 is 1.0 and others are set as 0.1.
The weight of the foreground pixels « is 1.5.

3. Quantitative Results
3.1. Generalization results on J-HMDB

We compare our method with ACGA [4] (only its code
is released) over JHMDB under three settings. (i) full su-
pervision: Training and testing on J-HMDB Sentences. (ii)
w/ fine-tuning: First training on A2D Sentences, then fine-
tuning and testing on J-HMDB Sentences. (iii) w/o fine-
tuning: First training on A2D Sentences, then testing on
J-HMDB Sentences. In term of Mean IoU (mloU), our
method (68.5%, 69.8% and 59.7%) significantly outper-
forms ACGA (63.4%, 66.7% and 58.5%), demonstrating
our method has better generalization ability.



3.2. Non-trivial subset of A2D Sentences

We also evaluate our model on the non-trivial subset
of A2D (re-categorized by RefVOS [1]), where non-trivial
means the referent (both the object and its referring expres-
sion) is not the only object of its class in the video. Our
model achieves 42.3% mloU on non-trivial, significantly
outperforming RefVOS by 9.1%. This clearly shows our
model can distinguish the referent between multiple actors
of the same class.

3.3. Temporal Consistency

We devise a consistency metric Video Precision@X
(VP@X), where a testing video is considered as correct
if all the annotated frames in this video have IoU scores
higher than the threshold X. The ratio between the numbers
of correct testing videos and total testing videos is VP@X.
Our model achieves 56.0% VP@0.5 while ACGA achieves
49.3%, indicating our model can predict steady masks along
the entire video.

3.4. Ablations on LGFS and CMAM

Inserting LGFS into {}, {I5} and {I5,I4,I3} yield
55.3%, 55.8% and 56.0% mloU respectively, showing
LGFS works better in deeper stages. Similar to the settings
in Table 3(a) of our main text, Spa+CMAM, Temp+CMAM
and Spa+Temp+CMAM yield 53.8%, 52.6% and 55.3%
mloU respectively, showing CMAM is more effective in our
model. But LGFS also has its own gains over the strong
baseline with CMAM, forming a helpful component.

4. Qualitative Results
4.1. Visualization of LGFS

As shown in Figure 1, for the left case, temporal channel
produces higher responses for the crawling child and ob-
tains larger selection weight than spatial channel (0.9904 vs.
0.0096). For the right case, spatial channel becomes domi-
nant for the static bird on left (the right bird just flied onto
the wall). These visualization results illustrate the adaptive
selection ability of LGFS.

4.2. Comparison with other methods

In Figure 2, we present the qualitative comparison be-
tween ACGA [4] and our method on the A2D Sentences
dataset. Different colors of the queries correspond to differ-
ent segmentation masks in each frame. From Figure 2 we
can observe that our method can yield more complete and
coherent segmentation masks on the queried actors while
ACGA only generates partial prediction on the actors. For
example, the person in row (a) and the ball in row (c) are
segmented with incomplete and oversized masks. In ad-
dition, ACGA also tends to misidentify the queried actor.

Expression: “The child is crawling up onto the sofa”
o "N Selection Weight: 010096 f§ Selection Weight: 0.9904

Expression: “A red bird is sitting on top of a wall”
L Selection Weight: 0.0148

Selection Weight: 0.9852

(c) Temporal Channel

(a) Frame (b) Spatial Channel

Figure 1. Attention maps of LGFS.

As shown in row (e), the dog is misidentified as the tod-
dler, which demonstrates the effectiveness of our method
on spatial-temporal multimodal modeling.

References

[1] Miriam Bellver, Carles Ventura, Carina Silberer, Ioannis
Kazakos, Jordi Torres, and Xavier Giro-i Nieto. Refvos: A
closer look at referring expressions for video object segmen-
tation. arXiv preprint arXiv:2010.00263, 2020. 2

[2] Kirill Gavrilyuk, Amir Ghodrati, Zhenyang Li, and Cees GM
Snoek. Actor and action video segmentation from a sentence.
In CVPR, 2018. 1

[3] Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia Schmid,
and Michael J Black. Towards understanding action recogni-
tion. In ICCV, 2013. 1

[4] Hao Wang, Cheng Deng, Junchi Yan, and Dacheng Tao.
Asymmetric cross-guided attention network for actor and ac-
tion video segmentation from natural language query. In
ICCV,2019. 1,2,3

[5] Chenliang Xu, Shao-Hang Hsieh, Caiming Xiong, and Jason J
Corso. Can humans fly? action understanding with multiple
classes of actors. In CVPR, 2015. 1



“Dog jumping to the woman”
“The person in blue shirt is dancing with a dog”
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“Dog is pushing a ball in front of its head”
“Blue ball is rolling on the grass”
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“Ablack dog is walking on the left”
“The toddler in a yellow shirt is walking a black lab”

“Girl in black pants standing”
“Girl rolling on the mat”
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Figure 2. Qualitative results on A2D Sentences. (a)(c)(e)(g) Results of ACGA [4]. (b)(d)(f)(h) Results of our model.



