
Mining Better Samples for Contrastive Learning of Temporal Correspondence
-Supplementary Materials-

Sangryul Jeon1, Dongbo Min2,∗, Seungryong Kim3, Kwanghoon Sohn1,∗

1Yonsei University, 2Ewha Womans University, 3Korea University
{cheonjsr,khsohn}@yonsei.ac.kr

dbmin@ewha.ac.kr, seungryong kim@korea.ac.kr

Here we describe more details on the implementa-
tion of our system in Sec. 1, and more ablation studies
in Sec. 2. Also, additional qualitative results of our method
are provided in a form of video on the validation set of
DAVIS2017 [9], Youtube-VOS 2018 [11], VIP [12], and
JHMDB dataset [4].

1. Implementation Details

Network architecture As summarized in Tab. 1, we
adopt ResNet-18 [2] network architecture as our backbone,
reducing the stride of convolutional layers to produce the
increased spatial resolution of the output by a factor of four
(i.e. downsampling factor of 1/8). For instance, given the
input image of 256× 256 spatial resolution during training,
the resulting feature maps have a size of 32× 32.

Label propagation algorithm Due to the rapid progress
in this research line, the label propagation algorithm of
the state-of-the-art methods [10, 7, 6, 3] is not standard-
ized. For a fair comparison, we simply follow the same
label propagation algorithm of the best approach for each
evaluation task; the algorithm of [3] for the evaluation on
DAVIS2017 dataset [9], the one of [6] for Youtube-VOS
2018 [11] dataset, and the one of [10, 7] for JHMDB [4]
and VIP dataset [12].

Specifically, in [10, 7], they propagate the given anno-
tation at the first frame by utilizing additional spatial and
temporal context in video. The spatial context is aggre-
gated in nearest neighbor search scheme, considering top-k
matching probabilities per each pixel. To provide temporal
context, the predictions from the first frame to the last pre-
ceding n frames onto the target frame are considered, av-
eraging all n + 1 predictions to obtain the final propagated
label. They set the hyperparameter of temporal context n to
1 for the evaluation on VIP dataset [12] and 7 for JHMDB
dataset [4], and the one of spatial context k to 5 for both
datasets.
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Layer Output Configuration

input H ×W

conv1 H/2×W/2 [7×7, 64]× 1

maxpool H/4×W/4 3×3

conv2 H/4×W/4

[
3× 3, 64
3× 3, 64

]
× 2

conv3 H/8×W/8

[
3× 3, 128
3× 3, 128

]
× 2

conv4 H/8×W/8

[
3× 3, 256
3× 3, 256

]
× 2

conv5 H/8×W/8

[
3× 3, 256
3× 3, 256

]
× 2

Table 1. Network architecture of our embedding networks. We
modified ResNet-18 [2] architecture to increase the resolution of
the output with the downsampling factor of 1/8.

In [3], they additionally leverage temporal coherence
constraint to restrict the set of context for each target pixel
to a spatial neighborhood of the query pixel with radius r.
Another difference is that they select top-k matching prob-
abilities over all the set of temporal context instead of in-
dependently selecting the top-k from each frame. For the
evaluation on DAVIS2017 dataset [9], they set the hyperpa-
rameters of {k, n, r} to {10, 20, 12}.

Similarly, in [6], they utilized the spatial and temporal
context for label propagation restricting the spatial atten-
tion to the local neighborhood. When compared to [3], the
differences are three folds; 1) the predictions of all possible
spatial context are aggregated in a form of softargmax [5],
2) the center of restricted local window is determined also
via softargmax operator instead of the position of a query
pixel, and 3) the temporal context n are set to 5 with slightly
different frame indices such that {I0, I5, It−5, It−3, It−1}.
To employ the label propagation algorithm of [6], we re-
move the maxpool layer of our network architecture to
provide the same spatial resolution of the feature maps with
respect to the one of [6].
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Figure 1. Convergence analysis of the performance with respect
to various upper thresholds m2. During the evaluations, the lower
threshold m1 is fixed to 0.

2. Ablation Study

We conduct additional series of ablation studies on the
validation set of DAVIS-2017 dataset [9] to further examine
the effects of our components.

Upper threshold m2 To validate the effectiveness of our
negative mining strategy, we additionaly examined the per-
formance of our model varying with different upper thresh-
olds m2. During the evaluations, we fixed the lower thresh-
old m1 to 0. Fig. 1 shows that allowing very hard negative
samples by setting upper threshold to 1 at the beginning of
training results in lower accuracies. We can attribute this
to the poor quality of representation in early training; us-
ing hard negatives can simply be too difficult for the current
representation capability to discriminate.

Choice of confidence scores for planning curriculum
We also report the performances with different choices of
confidence scores for computing the variance in Tab. 2. We
find that planning our curriculum based on the variance of
C degrades the performance as imposing temporal coher-
ence constraint to compute C may remove the information
needed to evaluate the current representation power by dis-
carding the confidence scores outside of the local window.
The usage of Q and T yields roughly similar performances,
but the sparsity of matrix T due to the optimal transport
optimization allows us to reduce the computing time and
memory.

Runtime analysis We measure the runtime of our com-
ponents for a given pair of input images during training.
The computation time required for sinkhorn algorithm [1] to
solve optimal transport problem is 242 ms. We also report
the runtime to compute the variances in Tab. 2. Note that
using the sparsity of matrix T allows us to reduce the com-
puting time and memory, compared to the ones when com-
puting with matrix Q. The measurements are performed
on an Intel Core i7-10700k CPU with two NVIDIA TITAN
RTX GPUs.

var(Q) var(T ) var(C) J&Fmean
Runtime
(ms)

3 - - 70.0 38.1
- - 3 65.8 16.5
- 3 - 70.3 17.3

Table 2. Ablation study on DAVIS-2017 validation set for differ-
ent confidence scores to compute variance in Equ.(9) of the main
paper. We also report the averaged runtime required to compute
the variance.

References
[1] Marco Cuturi. Sinkhorn distances: Lightspeed computation

of optimal transport. In Advances in neural information pro-
cessing systems, pages 2292–2300, 2013. 2

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[3] Allan Jabri, Andrew Owens, and Alexei A Efros. Space-time
correspondence as a contrastive random walk. Advances in
Neural Information Processing Systems, 2020. 1

[4] Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia
Schmid, and Michael J Black. Towards understanding ac-
tion recognition. In Proceedings of the IEEE international
conference on computer vision, pages 3192–3199, 2013. 1

[5] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter
Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.
End-to-end learning of geometry and context for deep stereo
regression. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 66–75, 2017. 1

[6] Zihang Lai, Erika Lu, and Weidi Xie. Mast: A memory-
augmented self-supervised tracker. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6479–6488, 2020. 1

[7] Xueting Li, Sifei Liu, Shalini De Mello, Xiaolong Wang,
Jan Kautz, and Ming-Hsuan Yang. Joint-task self-supervised
learning for temporal correspondence. In Advances in Neu-
ral Information Processing Systems, pages 318–328, 2019.
1

[8] Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho.
Hyperpixel flow: Semantic correspondence with multi-layer
neural features. In The IEEE International Conference on
Computer Vision (ICCV), October 2019.

[9] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M.
Gross, and A. Sorkine-Hornung. A benchmark dataset and
evaluation methodology for video object segmentation. In
Computer Vision and Pattern Recognition, 2016. 1, 2

[10] Xiaolong Wang, Allan Jabri, and Alexei A Efros. Learning
correspondence from the cycle-consistency of time. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2566–2576, 2019. 1

[11] Ning Xu, Linjie Yang, Yuchen Fan, Jianchao Yang,
Dingcheng Yue, Yuchen Liang, Brian Price, Scott Cohen,
and Thomas Huang. Youtube-vos: Sequence-to-sequence
video object segmentation. In Proceedings of the European
Conference on Computer Vision (ECCV), September 2018. 1

2



[12] Qixian Zhou, Xiaodan Liang, Ke Gong, and Liang Lin.
Adaptive temporal encoding network for video instance-
level human parsing. In Proceedings of the 26th ACM inter-
national conference on Multimedia, pages 1527–1535, 2018.
1

3


