
High-Fidelity Neural Human Motion Transfer from Monocular Video

— Supplementary Material —

Moritz Kappel1 Vladislav Golyanik2 Mohamed Elgharib2 Jann-Ole Henningson1

Hans-Peter Seidel2 Susana Castillo1 Christian Theobalt2 Marcus Magnor1

1 Computer Graphics Lab, TU Braunschweig, Germany {lastName}@graphics.tu-bs.de
2 Max Planck Institute for Informatics, Saarland Informatics Campus, Germany {lastName}@mpi-inf.mpg.de

In this supplementary document, we provide more details

on the methods examined in the main paper along with ad-

ditional results for the presented framework.

1. Garment Conditioning Representation and

Visualization

Our current implementation uses the self-correction for

human parsing method by Li et al. [7], that was trained on

the ATR dataset [8]. Thus, our method currently supports a

total of eighteen different labels (namely background, hat,

hair, sunglasses, upper clothes, skirt, pants, dress, belt, left

shoe, right shoe, face, left leg, right leg, left arm, right arm,

bag and scarf). To generate training data and visualize the

results, we use the official code of [7] provided by the au-

thors1. Naturally, our framework is compatible with arbi-

trary human parsing methods, and can easily be modified to

support the latest state-of-the-art approaches as well as new

datasets including labels for different types of clothing.

To estimate the internal gradient structure, we adopt the

procedure described by Tan et al. [12] for conditioning hair

structure. More precisely, we extract ground-truth annota-

tions from the video sequence using a set of 32 oriented

Gabor-filters KΘ with Θ = [0, π) being the discrete angle

values. By applying the filter stack to every pixel, we extract

a dense orientation on and confidence cn map for image in
by calculating the angle and amplitude of the maximum fil-

ter response as:

on =argmax
Θ

| (KΘ ⊗ in) |,

cn =max
Θ

| (KΘ ⊗ in) |,
(1)

where ⊗ denotes the convolution operator. We then follow

their procedure of converting on to a continuous represen-

tation, and Gaussian-filter the orientation map based on the

local confidence cn to reduce noise. However, in contrast to

1https://github.com/PeikeLi/Self-Correction-

Human-Parsing

Figure 1. Example of our garment structure visualization for one

of the dresses shown in the teaser from the main paper. We model

the orientation as hue in HSV-color space, while each pixel’s sat-

uration corresponds to the local gradient confidence.

hair, which comprises a dense structure field by nature, the

local gradient structure of clothing is usually sparse (e.g.,

tight monochromatic cloth) and highly dependent on the

texture and material. Thus, unlike the original implemen-

tation that discards confidence after filtering, we normal-

ize cn in the range [0, 1], and append it to the orientation

map, which results in our final two-channel clothing struc-

ture representation wn = (on, cn). Thus, intuitively, the

first channel of our clothing structure tells the appearance

network in which direction a gradient (e.g., produced by a

wrinkle) points, while the second channel models the con-

fidence and strength of texture changes for each individual

pixel. In our figures and supplemental video, we visualize

the structure representation wn similar to optical flow vec-

tors, where the orientation and length (confidence) are mod-

eled as hue and saturation in HSV-color space, respectively,

as shown in Fig. 1.

2. Perceptual Experiment

In our perceptual experiments, we aim at comparing the

reenacting results from an observer’s perspective, which re-

quires multiple stimuli with differences between them often
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being quite subtle. More importantly, the quality of the re-

sults that we aim to measure cannot be represented on a

linear scale [5], which advises against ranking the meth-

ods. Therefore, we chose the paired comparisons technique,

where the participants are shown two reenacted videos at

a time, side by side, and are asked to choose the one that

better fits the task question. We thus performed a two-

alternatives-forced-choice (2AFC) preference task assess-

ing reenactments by two compared methods for a given

video.

2.1. Stimuli

The First Experiment – Our Dataset. As described

in the main paper, we trained our method along with

other three state-of-the-art reenacting techniques (EDN [3],

pix2pixHD [13], and Recycle-GAN [1]) on some sequences

of our data set (see the top part of Fig. 2).

The Second Experiment – Liu et al.’s Dataset. We also

evaluated our technique on the dataset of Liu et al. [9] (see

the second bottom part of Fig. 2). Here, we trained two of

the compared methods (EDN [3] and ours) on this dataset.

Furthermore, we used the results of the reenactment ap-

proach of Liu et al. that was provided by the authors. Note

we can not replicate their method on any other dataset as it

requires a sophisticated capturing pipeline using a monocu-

lar structure-from-motion reconstruction of the target actor,

including delicate pre-processing and mesh fitting. For fair

comparison, all results were down-sampled to the resolu-

tion given by Liu et al. (256x256). Given the set of videos

and the three tested methods (Liu [9], EDN [3] and ours),

the total number of possible paired comparisons reduces to

twelve, making it well suitable for a single participant to

perform a complete test while maintaining the necessary

level of attention.

2.2. Experimental Procedure

The First Experiment. The study was hosted online, and

a total of 54 subjects from various computer science back-

grounds participated in the study. Before starting the exper-

iment, participants were presented a short text describing

the task and the procedure. The subjects were exposed to

several video pairs that play side by side. Each video in a

pair was produced by a different technique, and the order

of pairing between methods, position on the screen and or-

der of display of the pairs was fully randomized. For each

video pair, the subjects were asked to record their answers

to two questions: Q1 (”Which video looks more realistic?”)

and Q2 (”Which video shows more natural motion and de-

formation of the clothes?”). The study included a total of

twelve video pairs and took around ten minutes to complete.

Figure 2. Exemplary frames from the video sequences used as

stimuli for our perceptual experiments. Top: Exp. 1 conducted on

our dataset. Bottom: Exp. 2 on the dataset of Liu et al. [9].

The Second Experiment. The second experiment was

conducted in-situ. A total of 16 people (graphics and vision

experts) participated (age range 22-40 years; four women).

The mean time to complete the experiment was nine min-

utes. Before the experiment began, each participant was

informed about the structure and flow of the experiment—

but not of the research question behind it—and was given

the option to ask any further questions. The participants

performed the experiment one at a time. Before the exper-
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imenter left the room, the participant was asked to sit in a

semi-dark room roughly 50 cm in front of a 24” LED mon-

itor (with the resolution of 1920 × 1080). The respondents

then were exposed to a screen describing in detail the in-

structions and were given another chance to ask questions.

The experiment was controlled by Psychophysics toolbox,

version 3.0.15 (PTB-3) [2, 11, 6]. At the start of each trial,

participants were presented with two videos side by side.

Participants were explicitly instructed to focus their atten-

tion on the garments and ignore any potential artifact not

concerning the clothes. The participants were able to en-

ter their answers by clicking on the desired video and also

to replay each video individually as many times as desired;

once a response was entered, the next trial started. Both the

order of the stimuli, their pairing and their position on the

screen (left vs right) were fully randomized, with each par-

ticipant receiving a different random order. Each participant

reported normal or corrected-to-normal vision.

2.3. Analysis

To measure not only the performance of each method

but the agreement between participants, we followed the

linked-paired comparison design [4]. Thus, we rank meth-

ods according to the number of times they are preferred over

the other methods. The total number of votes a method

received is displayed in Table 1 for the first experiment

(“Exp. 1”) and Table 2 for the second experiment (“Exp. 2”).

To analyze the true meaning of this ranking, we perform

a significance test of the score differences. Towards that

goal, we need to find a value R′ for which the variance-

normalized range of scores within each group is lower or

equal to that value. This means that we need to compute

R′ such that P [R ≥ R′] ≤ α, where α is the confidence

level, which we set to 0.01. Then, following the work of

David [4] we can derive R′ from

P

(

Wt,α ≥ 2R′ − 0.5√
mt

)

, (2)

where t is the number of methods to be compared, m is the

number of participants and Wt,α has been previously tabu-

lated by Pearson and Hartley [10]. In our case, W4,0.01 =
4.405 for Exp. 1 (Table 1) and W3,0.01 = 4.125 for Exp. 2

(Table 2). This leads us to the values R′

Exp1 = 32.62001 for

the first experiment and R′

Exp2 = 14.53942 for the second

experiment. Since all the differences between the ranked

groups are bigger than the obtained R′, we can conclude

that they are all statistically significant. Thus, the rank-

ing creates four distinguishable groups in Exp. 1 for both

Q1 (”Which video looks more realistic?”) and Q2 (”Which

video shows more natural motion and deformation of the

clothes?”). Furthermore, the ranking creates three distin-

guishable positions in Exp. 2 (”Which video displays more

realistic clothes? (movement/deformations/appearance)”).

Exp. 1 Method Input #Votes Ranking

Q1

Ours Video (Pose) 257 1

Recycle-GAN [1] Video (RGB) 194 2

EDN [3] Video (Pose) 143 3

pix2pixHD [13] Video (Pose) 54 4

Q2

Ours Video (Pose) 243 1

Recycle-GAN [1] Video (RGB) 205 2

EDN [3] Video (Pose) 135 3

pix2pixHD [13] Video (Pose) 65 4

Table 1. Exp. 1: Perceptual ranking of the compared methods

for our online experiment with 54 participants with various back-

grounds for each of the questions (Q1 and Q2). All the rankings

are statistically significant.

Exp. 2 Method Input #Votes Ranking

Liu [9] Textured mesh + Video (Pose) 103 1

Ours Video (Pose) 76 2

EDN [3] Video (Pose) 13 3

Table 2. Exp. 2: Perceptual ranking of the compared methods

on the in-situ user-study with 16 CG/CV experts. The rankings

are statistically significant. This table is already included in the

main paper at the bottom of Table 2 and is repeated here for con-

venience.

Video Attributes. Additionally, to gain more insight on

the reasons to choose one result over another, in the exper-

iment conducted in-situ with CG/CV experts, the partici-

pants were occasionally asked to pick one or several items

out of a proposed set of reasons for not choosing a result.

This question appeared randomly with the probability of

1/3, i.e., the frequency we found suitable in order to main-

tain the participant’s attention without making the test te-

dious. Table 3 shows the complete list of reasons and how

often they were selected as a reason for rejecting a given

result. As can be derived from the table, the most frequent

reasons to discard a method were artifacts and implausible

deformations of the clothing.

This is the video you did not choose in the last % cases

comparison. Please specify which of the following reason

bothers you in this video. You may check multiple options. selected

Unrealistic wrinkles. 37.5%

Unrealistic clothes’ texture. 23.44%

Implausible deformations of the clothing. 59.63%

Temporal inconsistencies in the clothes’ movement. 20.31%

Other artifacts in clothing. 45.31%

The other result was simply more appealing. 10.94%

Other. 3.21%

Table 3. Questionnaire displayed after rejecting a result. The par-

ticipant was able to choose as many answers as desired. The sec-

ond column shows the frequency (%) for reporting one type of ar-

tifact when the questionnaire appeared after rejecting a result (four

times per participant). These numbers indicate the most frequent

reasons to discard a method, and thus, the most important features

for participants.
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3. Training Details

Our framework Gθ consist of four trainable components,

namely Gref , Gapp, Gstr , Gshp. For every network,

we adapt the local Pix2PixHD [13] generator architecture,

resulting in memory consumption and training times of

∼3.5× the reported values for the original implementa-

tion (Gref uses a reduced amount of intermediate blocks

due to the simplicity of the learned mapping). However,

to enable training on current graphics hardware, every in-

stance is currently trained individually using annotations

and losses described in the main document, which allows

for stepwise processing on consumer-grade devices, requir-

ing ∼5GB VRAM and ∼280 milliseconds per frame. To

achieve temporal smoothness in our garment conditioning

modules—and, thus, temporally consistent renderings of

body parts and clothing—we condition the shape and struc-

ture predictions on the previous outputs of the networks.

Intuitively, this information is crucial to estimate the non-

rigid deformations within clothing, as they do not only de-

pend on forces extracted from the change of pose, but also

the current state of the dynamic system. Thus, instead of

computing two consecutive frames and applying a temporal

discriminator, we process the videos in an entirely sequen-

tial manner, which results in temporally more stable results,

as shown in our supplemental video. Still, we cut the gradi-

ent to previous outputs, as we find that truncated temporal

backpropagation significantly increases memory consump-

tion and training times, without contributing much to the

final quality.

To further stabilize initial training or our recurrent com-

ponents, we use a combination of teacher forcing and con-

ventional training, similar to curriculum learning. More

specifically, we use (pseudo) ground-truth annotations for

the first epoch to stabilize and speed up initial training,

which encourages the network to rely upon accurate esti-

mates of the last time step. During later epochs, we feed

back previous network outputs to relax the reliance on fault-

less input data, helping the network to generalize to new

motion patterns and recover from erroneous predictions.

We further synthesize the first frame, where no predeces-

sor is available, based on a black image and iteratively ex-

ecute our networks on the initial input pose (with temporal

derivatives set to zero) until the output converges towards

a reasonable estimate (in practice, this takes around 20-30

iterations).
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