Supplementary Materials for
DriveGAN: Towards a Controllable High-Quality Neural Simulation

1. Model Architecture and Training

We provide detailed descriptions of the model architecture and training process for pre-trained image encoder-decoder
(Sec. 1.1) and dynamics engine (Sec. 1.2). Unless noted otherwise, we denote tensor dimensions by H x W x D where H
and W are the spatial height and width of a feature map, and D is the number of channels.

1.1. Pre-trained Latent Space

The latent space is pretrained with an encoder, generator and discrminator. Figure 1 shows the overview of the pretraining
model.

Image
. | Generator

theme

Figure 1. Pretraining stage learns the encoder and decoder for imagezs. The encoder £ produces z
disentangled latent space that the dynamics engine trains on. The gaussian blocks represent reparameterization steps [9].

content theme

and z which comprise the

1.1.1 Encoder

Encoder ¢ takes an RGB image = € R?6%256%3 4 input and produces disentangled latent codes z = {zheme zconent) where
Ztheme o R128 apq eoment ¢ R4x4x64 ¢ i composed of a feature extractor £ and two encoding heads £ and £heme,

Layer Output dimension Layer Output dimension Layer Output dimension
Conv2d 3x3 256x256x128 ResBlock 16x16x512 Conv2d 3x3 32x32x512
ResBlock 128 x 128 %256 ResBlock 8x8x512 AvgPool2d 32x32 512
ResBlock 64x64x512 ResBlock 4x4x512 Linear 256
ResBlock 32x32x512 Conv2d 3x3 4x4x512
Conv2d 3x3 4x4x128
Table 1. £ architecture Table 2. £<°™™ architecture Table 3. £ architecture

The above tables show the architecture for each component. £ takes z as input and consists of several convolution layers
whose output is passed to the two heads. Conv2d 3x3 denotes a 2D convolution layer with 3 x3 filters and padding of 1 to
produce the same spatial dimension as input. ResBlock denotes a residual block [3] with downsampling which is composed
of two 3x3 convolution layers and a skip connection layer. After each layer, we put the leaky ReLU [1 1] activation function,
except for the last layer of £°"e and £he™e The outputs of £ and £M°™ are equally split into two chunks by the channel
dimension, and used as p and o for the reparameterization steps:

z=p+eo, €~ N(0,I) (1)

producing Ztheme c R128 and Zcoment c R4X4X64.

1.1.2 Generator

The generator architecture closely follows the generator of StyleGAN [7]. Here, we discuss a few differences. 2" goes
through a 3 x3 convolution layer to make it a 4 x4 x 512 tensor. StyleGAN takes a constant tensor as an input to the first layer.
We concatenate the constant tensor with 2™ channel-wise and pass it to the first layer. "™ goes through 8 linear layers,
each outputting a 1024-dimensional vector, and the output is used for the adaptive instance normalization layers in the same
way style vectors are used in StyleGAN. The generator outputs a 256 X256 x 3 image.

1.1.3 Discriminator

Dicriminator takes the real and output images (256 x256x3) as input. We use multi-scale multi-patch discriminators [17, 6,
], which results in higher quality images for complex scenes.

Layer Output dimension Layer Output dimension Layer QOutput dimension
Conv2d 3x3 256x256x128 Conv2d 3x3 256x256%x128 Conv2d 3x3 128 x128x 128
ResBlock 128 x 128 x256 ResBlock 128 x 128 x256 ResBlock 64 x64 %256
ResBlock 64x64x512 ResBlock 64x64x512 ResBlock 32x32x512
ResBlock 32x32x512 ResBlock 32x32x512 ResBlock 16x16x512
ResBlock 16x16x156 ResBlock 16x16x512 ResBlock 8x8x512
ResBlock 8x8x512 Conv2d 3x3 16x16x1 Conv2d 3x3 8x8x1

ResBlock 4x4x512
Conv2d 3x3 4x4x512
Linear 512
Linear 1
Table 4. D; architecture Table 5. D5 architecture Table 6. D3 architecture

We use three discrminators D1, Do, and D3. D, takes a 256x256%3 image as input and produces a single number. Do
takes a 256 x256x 3 image as input and produces 16x 16 patches each with a single number. D3 takes a 128 x 128 x3 image
as input and produces 8 x 8 patches each with a single number. The inputs to D1, D5, D3 are the real and generated images,
except that the input to D3 is downsampled by 2. The model architectures are described in the above tables, and we use the
same convolution layer and residual blocks from the previous sections. Each layer is followed by a leaky ReLU activation
function except for the last layer.

1.1.4 Training

‘We combine the loss functions of VAE [9] and GAN [2], and let Lyyetrain = Lv ar + Lgan. We use the same loss function
for the adversarial loss Lg 4y from StyleGAN [7], except that we have three terms for each discriminator. Ly 4 g is defined
as:

Lyap = E.vq(zln llog(p(2]2))] + BK L(q(z])|p(2))

where p(z) is the standard normal prior distribution, ¢(z|z) is the approximate posterior from the encoder &, and K L is
the Kullback-Leibler divergence. For the reconstruction term, we reduce the perceptual distance [18] between the input and
output images rather than the pixel-wise distance, and this term is weighted by 25.0. We use separate 3 values 3"°™ and
geontent for peontent and ptheme We also found different 3 values work better for different environments. We use gheme =
1.0, geonent — 2 0 for Carla, ghe™e = 1.0, g°onent = 4.0 for Gibson, and g™ = 1.0, genent — 1.0 for RWD. Adam [8]
optimizer is employed with learning rate of 0.002 for 310,000 optimization steps. We use a batch size of 16.

1.2. Dynamics Engine

With the pre-trained encoder and decoder, the Dynamics Engine learns the transition between latent codes from one time
step to the next given an action a,. We first pre-extract the latent codes for each image in the training data, and only learn
the transition between the latent codes. All neural network layers described below are followed by a leaky ReLU activation
function, except for the outputs of discriminators, the outputs for y, o variables used for reparameterization steps, and the
outputs for the AdaIN parameters.

_theme

theme
Z “t+2

t4+1

content
t+1

content
2t 242

AdalN+Conv

Dynamics Engine

--->

Dynamics Engine

==="> ConvlSIM |----F---4-~- T----> ConviSIM |- -~ ~-1 ==~ ==
|
_/ I _/
1
e
th onte ! th tent,
(It zt eme Zf()ntvnt : (1t+1 Zf+ellns Zfili en

Figure 2. Dynamics Engine produces the next latent codes, given an action and previous latent codes. It disentangles content information
into action-dependent and action-independent features with its two separate LSTMs. Dashed lines correspond to temporal connections.
Gaussian blocks indicate reparameterization steps.

The major components of the Dynamics Engine are its two LSTM modules. The first one learns the spatial transition
between the latent codes and is implemented as a convolutional LSTM module (Figure 2).

= FOHOE, a, 5%,) ®
i, fe.00 = o(v]), o (v]),0(v7) 3)
& = fr © &2 + iy © tanh(vf) 4)
h$o™ = o; ® tanh(c™™) ()

where h$*™, c¢{®" are the hidden and cell state of the convLSTM module, and ¢, f, o; are the input, forget, output gates,
respectively. 7 replicates a; and 2™ spatially to match the 4 x 4 spatial dimension of 2", It fuses all inputs by
concatenating and running through a 1 x 1 convolution layer, resulting in a 4x4x48 tensor. JF is composed of two 3 X 3
convolution layers with a padding of 1, and produces v; € R**4*512_ 4, is split channel-wise into intermediate variables
vf ol v2, 07, All state and intermediate variables have the same size R**4*128_ The hidden state h%™ goes through two
separate convolution layers: 1) 1x1 Conv2d layer that produces 4x4x 128 tensor which is split into two chuncks with
equal size 4 x4x 64 and used for the reparameterization step (Eq. 1) to produce zfj_”l € R*X4%64 and 2) 4x4 conv2d layer

with no padding that produces a 256 dimensional vector; this is also split into two chunks and reparameterized to produce

theme 128
zits € RS

The second one is a plain LSTM [4] module that only takes z; as input. Therefore, this module is responsible for informa-
tion that does not depend on the action a,. The input z, is flattened into a vector € R'!52 and goes through five linear layers
each outputting 1024-dimensional vectors. The encoded z; is fed to the LSTM module and all variables inside this module
have size R1924, We experimented with both LSTM and GRU [1] but did not observe much difference. The hidden state goes
through a linear layer that outputs a 2048-dimensional vector. This vector is split into two chunks for reparmetrization and
produces z, " € R102,

Finally, 2, and z,'" are used as inputs to two AdalN + Conv blocks.

a,8 = MLP(z) (©6)
2 = C(A(C(A(z(41, o, B8)), e, B)) (7

where we denote convolution and AdalIN layers as C and A, respectively. The two M LPs (for each block) consist of two
linear layers. They produce 64 and 256 dimensional a, 3, respectively. The first 3x3 conv2d layer C produces 4 x4x256
tensor, and the second 3x3 conv2d layer produces 2§ € R**4x64,

Layer Output dimension Layer Input dimension | Output dimension

SNLinear + BN 1024 SNConvld 204831 128x15
SNLinear + BN 1024 SNConv1d 128x 15 25613
SNLinear + BN 1024 SNConvld 256%13 512x6
SNLinear + BN 1024 Table 8. Diemporar architecture. Input and output dimensions contain two num-
SNLinear + BN 1024 bers, the first one for the number of channels or vector dimension, and the second

SNLinear 1 one for the temporal dimension. Note that Convld is applied on the temporal di-

Table 7. Dgingie architecture mension.

1.2.1 Discriminator

We use disciminators on the flattened 1152 dimensional latent codes z (concatenation of "™ and flattened z°°"©"). There
are two discriminators 1) single latent discriminator D;y,4¢, and 2) temporal action-conditioned discriminator Dyepporai-

We denote SNLinear and SNConv as linear and convolution layers with Spectral Normalization [13] applied, and BN as
1D Batch Normalization layers [5]. Dg;ipgie is a 6-layer M L P that tries to discriminate generated z from the real latent codes.
It takes a single z as input and produces a single number. For the temporal action-conditioned discriminator Dyemporal, We
first reuse the 1024-dimensional feature representation from the fourth layer of D, 4. for each z;. The represenations for z;
and z;_ are concatenated and go through a SNLinear layer to produce the 1024-dimensional temporal discriminator feature.
Let us denote the temporal discriminator feature as z; ;1. The action a; also goes through a SNLinear layer to produce the
1024-dimensional action embedding. z; ;—; and the action embedding are concatenated and used as the input t0 D¢ermporal-
We use 32 time-steps to train DriveGAN, so the input t0 Dyempore; has size 2048 x31 where 31 is the temporal dimension.
Table 8 shows the architecture of Diemporar. After each layer of Dyepmporar, We put a 3-timestep wide convolution layer that
produces a single number for each resulting time dimension. Therefore, there are three outputs of Dyepporar With sizes 14,
11, and 4 which can be thought of as patches in the temporal dimension. We also sample negative actions a;, and the job of
Diemporal 18 to figure out if the given sequence of latent codes is realistic and faithful to the given action sequences. a; is
sampled randomly from the training dataset.

1.2.2 Training

We use Adam optimizer with learning rate of 0.0001 for 400,000 optimization steps. We use batch size of 128 each with
32 time-steps and train with a warm-up phase. In the warm-up phase, we feed in the ground-truth latent codes as input for
the first 18 time-steps and linearly decay the number to 1 at 100-th epoch, which corresponds to completely autoregressive
training at that point. We use the loss Lpr = Lady + Liatent + Laction + L L- Lagy 1S the adversarial losses, and we use the
hinge loss [10, 16]. We also add a R; gradient regularizer [12] to L4, that penalizes the gradients of discriminators on true
data . Lgction 18 the action reconstruction loss (implemented as a mean squared error loss) which we obtain by running the
temporal discriminator features z; ;; through a linear layer to reconstruct the input action a;_;. Finally, we add the latent
code reconstruction loss Lj4sent (implemented as a mean squared error loss) so that the generated z; matches the input latent
codes, and reduce the K L penalty Lg for zf de",zf indep z;heme. Ligtent 1s weighted by 10.0 and we use different g for the
K L penalty terms. We use 3% = (.1, 3% = (.1, g"m¢ = 1.0 for Carla, and 3% = 0.5, f%me = (.25, feme = 1.0 for
Gibson and RWD.

2. Additional Analysis on Experiments

LiftSplat [14] proposed a model for producing the Bird’s-Eye-View (BEV) representation of a scene from camera images.
Section 4.3 in the main text shows how we can leverage LiftSplat to get BEV lane predictions from a simulated sequence
from DriveGAN. We can further analyze the qualitative result by comparing how the perception model (LiftSplat) perceives
the ground truth and generated sequences differently. We fit a quadratic function to the LiftSplat BEV lane prediction for
each image in the ground-truth sequence, and compare the distance between the fitted quadratic and the predicted lanes.

We show results on different look-ahead distances, which denote how far from the ego-car we are making the BEV pre-
dictions for. Random denotes comparing the distance between the fitted quadratic and the BEV prediction for a randomly
sampled RWD sequence. DriveGAN denotes the distance for the BEV prediction for the optimized sequence with differen-
tiable simulation of DriveGAN. Ground-Truth denotes the distance for the BEV prediction for the ground-truth image. Note
that Ground-Truth is not 0 since the fitted quadratic does not necessarily follow the lane predction from the ground-truth

BEYV Prediction Look-ahead Distance
Model 25m 50m 75m 100m
Random 09Im 1.78m 2.95m 4.74m
DriveGAN 0.58m 1.00m 1.70m 2.99m

Ground-Truth | 0.3Ilm 0.37m 0.88m 2.07m
Table 9. Mean distance from the BEV lane predictions and fitted quadratic in meters.

image exactly. We can see that DriveGAN-optimized sequences produce lanes that follow the ground-truth lanes. We could
find the underlying actions and stochastic variables from a real video through differentiable simulation.

References

(1]
(2]
(3]

(4]
(3]

(6]
(7]
(8]
(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
(17]

(18]

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks
on sequence modeling. arXiv preprint arXiv:1412.3555,2014. 3

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative adversarial networks, 2014. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770-778, 2016. 1

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735-1780, 1997. 3

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015. 4

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1125-1134, 2017. 2

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and improving the image
quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8110-8119,
2020. 2

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 2
Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014. 1, 2

Jae Hyun Lim and Jong Chul Ye. Geometric gan. arXiv preprint arXiv:1705.02894, 2017. 4

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network acoustic models. In Proc.
icml, volume 30, page 3, 2013. 1

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do actually converge? arXiv preprint
arXiv:1801.04406, 2018. 4

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks.
arXiv preprint arXiv:1802.05957, 2018. 4

Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3d. arXiv
preprint arXiv:2008.05711, 2020. 4

Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan: Learning a generative model from a single natural image. In Proceed-
ings of the IEEE International Conference on Computer Vision, pages 4570-4580, 2019. 2

Dustin Tran, Rajesh Ranganath, and David Blei. Hierarchical implicit models and likelihood-free variational inference. In Advances
in Neural Information Processing Systems, pages 5523-5533, 2017. 4

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-video synthesis.
CoRR, abs/1808.06601, 2018. 2

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a
perceptual metric. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 586-595, 2018. 2

