
Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes

- Supplementary Material -

Dmytro Kotovenko* Matthias Wright* Arthur Heimbrecht Björn Ommer
IWR, Heidelberg Collaboratory for Image Processing, Heidelberg University

Contents

1. Videos 1

2. Controlling the Flow of Brushstrokes with User
Input 1

3. Renderer 2
3.1. Brushstroke Parameterization 2
3.2. Tensor of Distances 2
3.3. Hardware, Runtime, Memory 3

3.3.1 Number of Brushstrokes 3

4. Trained Renderer 3
4.1. Architecture 3
4.2. Training . 4

5. Additional Results 4
5.1. Fitting Brushstrokes to Artwork 4
5.2. User Study 4

1. Videos
In order to give insights into the stylization procedure,

we provide two videos, see:

• https://heibox.uni-heidelberg.de/f/
77c92a1355904de6a6be/

• https://heibox.uni-heidelberg.de/f/
c17c112570f646bab081/

In these videos we show how the stylization evolves over
time, before and after pixel optimization. We also compare
to Gatys et al. [3] and show how the user input (Sec. 2)
influences the stylization. See Fig. 1.

2. Controlling the Flow of Brushstrokes with
User Input

In Sec 5.4 of the paper, we showed how our method en-
ables us to control the flow of brushstrokes. A user can draw

*Both authors contributed equally to this work.

Figure 1. We provide videos that show how the stylization evolves
over time. Moreover, we show how flow constraints change the
stylization. See Sec. 1. Videos are attached to the supplementary
material.

arbitrary curves on the content image through a user inter-
face and the brushstrokes in the stylized image will follow
these curves. This can be achieved by adding a simple pro-
jection loss, which we will explain in this section.
Each drawn curve is represented as a set of points
P1, P2, ..., PM (do not confuse those with the control points
for a Bézier curve). For each point Pi the approximate tan-
gent vector vi is computed as follows:

vi =
ṽi

||ṽi||
, ṽi =

 1

Q

Q∑
j=1

Pi+j

− Pi, (1)

where Q = 3 in all our experiments. Fig. 2 shows user
drawn curves with corresponding tangent vectors.

As explained in Sec. 4 of the paper, each brushstroke is
represented as a quadratic Bézier curve with additional pa-
rameters for location, width, and color. A quadratic Bézier
curve is parameterized by three points: a start point, an end
point, and a control point. Roughly speaking, the start and
end points determine the curves orientation and the control

1

Figure 2. Top: A user draws arbitrary curves through a user inter-
face. Bottom: A curve is represented as a set of points. For each
point we can compute an approximate tangent vector.

point determines the curvature. The projection loss is com-
puted as follows:

1. Compute for each brushstroke the vector from the start
point to the end point of the Bézier curve, see Fig. 3.
We will refer to this vector as the orientation vector of
a brushstroke.

2. For each tangent vector, compute the L nearest brush-
strokes on the canvas. L is a hyperparameter and de-
termines the range of the brushstrokes that will be af-
fected by the drawn curves. Fig. 5 shows the influence
of L on the stylization.

3. For each tangent vector, compute the projection of the
orientation vectors from the nearest brushstrokes onto
the tangent vector. Both the tangent vectors and the
orientation vectors are normalized to unit length.

4. The projection loss encourages the absolute value of
these projections to be 1. Since all vectors are normal-
ized, the absolute value of the projections will be 1 if
and only if the orientation vectors are parallel to the

Figure 3. The brushstroke is parameterized by color rgb ∈ R3,
width w ∈ R and Bézier curve B(t). The Bézier curve is defined
by points P0, P1, P2 ∈ R2 and position on a curve t ∈ [0; 1].
The direction (orientation) vector d ∈ R2 is used to simplify the
strokes.

tangent vector. See Fig. 6 for an overview of the whole
computation.

See Fig. 7 and 8 for more results.

3. Renderer
3.1. Brushstroke Parameterization

Each brushstroke is parameterized by color rgb ∈ R3,
Bézier curve B(t) with t ∈ [0; 1] and width w ∈ R. Bézier
curve B(t) is introduced in the main paper in Eq. 4:

B(t) = (1− t)2P0+2(1− t)tP1+ t2P2 , 0 ≤ t ≤ 1. (2)

From the formulation we see that B(t) depends on three
points P0, P1, P2 ∈ R2 which we further call start point,
control point and end point, respectively. We additionally
define the direction (orientation) d ∈ R2 of a stroke as
d := P2 − P0. This vector will be used in Sec. 2 to con-
trol the flow of the brushstrokes. This parameterization of a
brushstrokes is illustrated in Fig. 3.

3.2. Tensor of Distances

As described in Alg. 1 of the main paper, the corner-
stone of our rendering mechanism is a tensor of distances
D between every sampled point on a brushstroke and each
point on a canvas. We use a canvas C of size H×W , where
H = W = 256. We typically draw N = 5000 brushstrokes
and on every brushstrokes we sample S = 10 points. This
results in a tensor of shape H × W × N × S. If we use
float32 data type taking 4 Bytes, then the distances ten-
sor has size 256 ∗ 256 ∗ 5000 ∗ 10 ∗ 4 = 13107200000 ≈
13GB, which is infeasible in practice. However, we actually
do not need to compute the distances between every pixel
and every brushstroke since a pixel is only affected by a few

2

nearby brushstrokes, say by K nearest brushstrokes (in our
implementation we set K = 20). With this in mind, we can
reduce the tensor of distances D of shape H×W×N×S to
the size H ×W ×K × S which requires N

K = 5000
20 = 250

times less memory, roughly 52MB.

In order to accomplish the tensor size reduction, we need
to assign the K nearest brushstrokes to each pixel. How-
ever, for this we would need the tensor of distances of size
H ×W × N , which is not feasible for large values of N .
This problem can be circumvented if we compute the dis-
tances from each of the N brushstrokes to a sparse subset of
“anchor” points on the tensor of locations C ∈ RH×W . We
create a tensor Ccoarse of size H ′ ×W ′ where H ′ < H and
W ′ < W containing subset of tensor C, in our case we set
H ′ = 0.1 ·H and W ′ = 0.1 ·W . Now we can effectively
compute the tensor of distances between Ccoarse and each
brushstroke, it will have shape H ′ ×W ′ × N . We left out
dimension S because we only need to roughly estimate the
distances of the brushstrokes that are close to the location,
so we use the location coordinates of the whole brushstroke.
Now we extract the K nearest strokes at every location and
obtain a tensor of indices idcs′ having shape H ′×W ′×K.
We then apply nearest neighbor upsampling to idcs′ across
dimensions H and W and obtain idcs, a tensor of shape
H ×W × K. Thus, every pixel will have the same near-
est neighbors as the nearest “anchor” point. This tensor of
indices indicates the K nearest brushstrokes for each pixel
of the canvas. Now using this tensor of indices idcs and the
tf.gather operation in TensorFlow we can effectively
assign to every location only the K nearest strokes. We
note that the same stroke is assigned to multiple locations
but this does not hinder the optimization process because
the stroke will just receive more gradient information.

3.3. Hardware, Runtime, Memory

Our stylization process consists of two stages. At the
first stage we optimize brushstroke parameters, at the sec-
ond stage we optimize individual pixels.

Brushstroke parameters optimization. We use a can-
vas of size H ×W , where H = W = 256 and optimize us-
ing our renderer for 1000 steps using the Adam Optimizer
[7]. It takes around 3 minutes.

Pixel optimization. Now we upsample the canvas with
fitted strokes to have the smallest image side of 1024px and
keep the input content image aspect ratio. This image with
fitted brushstrokes is used as both content image and initial-
ization for the standard Gatys et al. stylization routine. We
optimize for another 1000 steps using the Adam optimizer.
It takes 4 more minutes to converge. All the experiments are
conducted on NVIDIA TitanXP or NVIDIA 2080Ti graphic
cards.

Figure 4. Generated brushstrokes using the trained renderer. Top
row: generated brushstrokes. Bottom row: ground truth simu-
lated in the FluidPaint environment [https://david.li/
paint/]. The alpha mask is always white and located to the right
of the brushstroke.

3.3.1 Number of Brushstrokes

The memory consumption does not depend on the number
of strokes, see Sec. 3.2. However, the run-time reduces
linearly as the number of strokes increases, see Tab.1.

4. Trained Renderer

In order to ablate our renderer, we trained a neural net-
work that receives brushstroke parameters as input and gen-
erates the corresponding brushstrokes. The brushstrokes are
parameterized as described in Sec. 4 of the main paper or
in Sec. 3 of the supplementary. The network generates an
RGB image of a brushstroke as well as an alpha mask. In or-
der to render N brushstrokes onto a canvas, we first have to
generate each brushstroke individually and then blend them
together using the alpha masks. See Fig. 4 for some gener-
ated brushstrokes.

4.1. Architecture

The brushstroke generator follows the StyleGAN archi-
tecture [6] and consists of a mapping network f and a
synthesis network g, here we adopt the notation from the
StyleGAN paper. The mapping network f takes in the
brushstroke parameters z and processes them using 4 fully-
connected layers to create the latent vector w. The synthesis
network g consists of 4 blocks, each consisting of an upsam-
pling layer, a 3x3 convolutional layer, and an AdaIN layer
[5]. The latent vector w is injected into the AdaIN layers
using learned affine transformations. After every convolu-
tional layers we also inject noise.
The discriminator follows the StyleGAN architecture [6] as
well, however, it only consists of 8 layers.

Table 1. Run-time and memory analysis. Experiment conducted
on a TITAN Xp GPU.
Strokes 1K 5K 10K 15K 20K

Speed [iter/s] 1.17± 0.01 1.16± 0.01 1.08± 0.01 1.0± 0.01 0.93± 0.01
Memory [GB] 9550 9550 9550 9550 9550

3

4.2. Training

For training, we used the Wasserstein GAN loss [2] with
gradient penalty [4] and a L2 loss (equally weighted). We
used the Adam optimizer [7] with learning rate 0.0002.

5. Additional Results
We provide additional stylization examples in Fig. 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26.

5.1. Fitting Brushstrokes to Artwork

In Sec. 5.3 of the paper we showed how we can use our
renderer to fit brushstrokes to paintings. Note that we use
SLIC superpixels [1] to initialize the brushstrokes for this
experiment. We only optimize the brushstroke parameters
and did not apply pixel level optimization for this experi-
ment. See Fig. 27, 28, 29 for additional results.

5.2. User Study

To evaluate the quality of the synthesized images we use
two methods. First, we compute the deception score, as
suggested by Sanakoyeu et al. [9]. This score indicates how
similar is a given stylization to the actual style of the artist.
Another way to evaluate the quality of images is to perform
a user study. We show to a human subject cropouts from im-
ages obtained using different stylization approaches or real
artworks and ask them to pick crops from a real artwork.
Among the stylization approaches we have Gatys et al. [3],
AST by Sanakoyeu et al. [9], WCT [8], and AdaIN [5]. At
once we show 4 images: each drawn randomly and inde-
pendently. In Fig. 30 we present randomly drawn example
trials. Note that in Fig. 30 we do not provide images for
WCT [8] and AdaIN [5] since those are easy to spot in most
cases.

L = 10

L = 30

L = 60

L = 100
Figure 5. Controlling the flow of brushstrokes with different values
for L. The larger the value L the more strokes around the user
input are affected. User input is porvider in Fig.2.4

Figure 6. Overview of projection loss for a specific tangent vector. For each tangent vector (green), we select the closest brushstrokes
(gray). We then take the orientation vector (black) for each brushstroke and compute the projection (yellow) onto the tangent vector.

5

(a) Content (b) Stylized without user input

(d) Content with user input (e) Stylized with user input
Figure 7. A user can draw curves on the content image and thus control the flow of the brushstrokes in the stylized image. Note that for the
stylization with user input we also used (a) as content image. The control is imposed on the brushstroke parameters, not the pixels.

6

(a) Content (b) Stylized without user input

(d) Content with user input (e) Stylized with user input
Figure 8. A user can draw curves on the content image and thus control the flow of the brushstrokes in the stylized image. Note that for the
stylization with user input we also used (a) as content image. The control is imposed on the brushstroke parameters, not the pixels.

7

Figure 9. Style image: “The Weeping Woman” by Pablo Picasso.

8

Figure 10. Style image: “Ile De Bréhat” by Samuel John Peploe.

9

Figure 11. Style image: “Road with Cypress and Star” by Vincent van Gogh.

10

Figure 12. Style image: “Antibes, the Pink Cloud” by Paul Signac.

11

Figure 13. Style image: “Girl on a Divan” by Ernst Ludwig Kirchner.

12

Figure 14. Style image: “A Pair of Leather Clogs” by Vincent van Gogh.

13

Figure 15. Style image: “La Corne d’Or” by Paul Signac.

14

Figure 16. Style image: “Self Portrait” by Pablo Picasso.

15

Figure 17. Style image: “Murnau Street With Women” by Wassily Kandinsky.

16

Figure 18. Style image: “Barges on the Seine” by Maurice de Vlaminck.

17

Figure 19. Style image: “Red Cabbages and Onions” by Vincent van Gogh.

18

Figure 20. Style image: “The Scream” by Edvard Munch.

19

Figure 21. Style image: “The Olive Trees” by Vincent van Gogh.

20

Figure 22. Style image: “Spring in the Elm Forest” by Edvard Munch.

21

Figure 23. Style image: “Les Alyscamps” by Vincent van Gogh.

22

Figure 24. Style image: “The Olive Trees” by Vincent van Gogh.

23

Figure 25. Style image: “Olive Trees with Yellow Sky and Sun” by Vincent van Gogh.

24

Figure 26. Style image: “Red Cabbages and Onions” by Vincent van Gogh.

25

Figure 27. Brushstroke approximation of “Starry Night” by Vincent van Gogh using 12.000 brushstrokes.

26

Figure 28. Brushstroke approximation of “Road with Cypress and Star” by Vincent van Gogh using 12.000 brushstrokes.

27

Figure 29. Brushstroke approximation of “Iris” by Vincent van Gogh using 12.000 brushstrokes.

28

Figure 30. Randomly sampled patches from the user study. In each round we show one row and ask the users to mark all the patches
cropped out of real artworks. Each crop in a row is drawn from either a real artwork (‘real’), a stylization by Gatys et al. [3] (‘Gatys’), a
stylization by Sanakoyeu et al. [9] (‘AST’), or from our method (‘ours’). In this table we have restricted ourselves to only those 4 classes
to make this quiz more difficult for the reader. Try to guess which are real. The answers are on the last page.

29

Solution to Fig. 30:
ours, ours, real, ours
ours, real, Gatys, AST
Gatys, ours, ours, AST
Gatys, AST, real, Gatys
ours, AST, real, real
Gatys, ours, AST, AST
AST, ours, real, real
Gatys, ours, Gatys, Gatys

30

References
[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien

Lucchi, Pascal Fua, and Sabine Süsstrunk. Slic superpixels
compared to state-of-the-art superpixel methods. IEEE Trans.
Pattern Anal. Mach. Intell., 34(11):2274–2282, 2012. 4

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein generative adversarial networks. 2017. 4

[3] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
IEEE Conf. Comput. Vis. Pattern Recog., June 2016. 1, 4,
29

[4] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron Courville. Improved training of wasser-
stein gans. In Adv. Neural Inform. Process. Syst., 2017. 4

[5] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Int. Conf.
Comput. Vis., 2017. 3, 4

[6] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
IEEE Conf. Comput. Vis. Pattern Recog., 2019. 3

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Int. Conf. Learn. Represent., 2014.
3, 4

[8] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,
and Ming-Hsuan Yang. Universal style transfer via feature
transforms. In Adv. Neural Inform. Process. Syst., 2017. 4

[9] Artsiom Sanakoyeu, Dmytro Kotovenko, Sabine Lang, and
Björn Ommer. A style-aware content loss for real-time hd
style transfer. In Eur. Conf. Comput. Vis., 2018. 4, 29

31

