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A. Proof of Theorem 4.2
We post the Theorem 4.2 from the main text here for

completeness.

Theorem A.1 (Identifiability). We assume that fx, fy, fA
are bijective. Denote gty(st, vt) := E(yT |st, vt,Bj≤t). Un-
der the following conditions:

1. {T to,i,j} are differentiable and non-zero almost every-
where for any o ∈ {s,v, z} and t ≤ T .

2. For every t, there exists at least m := d ∗ k + 1
with d := max(ds, dv, dz) and k := max(ks, kv, kz)
values of Bt=0, i.e., B1,t=0, ...,Bm,t=0 such that
the [Γto(B2,t=0) − Γto(B1,t=0), ..., Γto(Bm,t=0) −
Γto(B1,t=0)] have full column rank and o ∈ {s,v, z},

we have that if θ and θ̃ give rise to the same observational
distribution, i.e., pθ(xt, yT ,vt) = pθ̃(xt, yT ,vt) for any
xt, yT ,vt and t < T , then there exists invertible matrices
{M t

o}o∈{s,v,z} and vectors {bto}o∈{s,v,z} such that:

Disentangle :

T ts([f−1
x ]S(xt)) = M t

sT̃
t
s([f̃−1

x ]S(xt)) + bts, (1)

T tv([f−1
x ]V(xt)) = M t

vT̃
t
v([f̃−1

x ]V(xt)) + btv, (2)

T tz([f−1
x ]Z(xt)) = M t

zT̃
t
z([f̃−1

x ]Z(xt)) + btz, (3)
Prediction :

gty([f−1
x ]S,V(xt)) = g̃ty([f̃−1

x ]S,V(xt)). (4)

Proof. To avoid the ambiguity, we denote the final step
as T̄ . Denote θ := {fx, fy, fA, fh,Tt

h,Γ
t
h}, where

fh := {fs, fv, fz}, Tt
h := {Tt

s,T
t
v,T

t
z} and Γth :=

{Γts,Γtv,Γtz}. For θ and θ̃ that give rise to the same ob-
servational distribution, we have:

pθ(xt|B<t) = pθ̃(xt|B<t)

=⇒
∫
pfx(xt|ht)pTt

h,Γ
t
h
(ht|B<t)dht

=

∫
pf̃x(xt|ht)pT̃t

h,Γ̃
t
h
(ht|B<t)dht

=⇒ pεx(xt − x̄t)pTt
h,Γ

t
h
(f−1
x (x̄t)|B<t)|Jf−1

x
|dx̄t

= pεx(xt − x̄t)pT̃t
h,Γ̃

t
h
(f̃−1
x (x̄t)|B<t)|Jf̃−1

x
|dx̄t

=⇒ (p̃Tt
h,Γ

t
h,fx
∗ pεx)(xt|B<t) = (p̃T̃t

h,Γ̃
t
h,f̃x
∗ pεx)(xt|B<t)

=⇒ F [p̃Tt
h,Γ

t
h,fx

](ω)ϕεx(ω) = F [p̃T̃t
h,Γ̃

t
h,f̃x

](ω)ϕεx(ω)

=⇒ F [p̃Tt
h,Γ

t
h,fx

](ω) = F [p̃T̃t
h,Γ̃

t
h,f̃x

](ω)

=⇒ p̃Tt
h,Γ

t
h,fx

(xt|B<t) = p̃T̃t
h,Γ̃

t
h,f̃x

(xt|B<t), (5)

where the “J”,“F ” stands for Jacobian matrix and
Fourier Transformation; the φ(ω) denotes the character-
istic function of εx; and the p̃Tt

h,Γ
t
h,fx

(xt) is denoted as
pTt

h,Γ
t
h
(f−1
x (xt)|B<t)|Jf−1

x
|. Follow the same derivation,

we can similarly obtain that

p̃Tt
v,Γ

t
v,fA

(At|B<t) = p̃T̃t
v,Γ̃

t
v,f̃A

(At|B<t). (6)

For the label YT , we have

p̃TT̄
v,s,Γ

T̄
v,s,fy

(yT̄ |B<T̄ ) = p̃T̃T̄
v,s,Γ̃

T̄
v,s,fy

(yT̄ |B<T̄ )

=⇒ pfy (f−1
y (yT̄ )|B<T̄ )|Jf−1

y
|= pf̃y (f̃−1

y (yT̄ )|B<T̄ )|Jf̃−1
y
|

(7)

where TT̄
v,s := {TT̄

s ,T
T̄
v } and ΓT̄v,s := {ΓT̄s ,ΓT̄v }. The

Eq. (7) transforms the equivalence of the observational
space to the equivalence of the S×V at time T̄ −1. Further,
since∫

pfy (f−1
y (yT̄ )|h−z

T̄−1
, BT̄−1)pfs,v (h−z

T̄−1
|B≤T̄−1)dh−z

T̄−1
|Jf−1

y
|

=

∫
pf̃y (f̃−1

y (yT̄ )|h−z
T̄−1

, BT̄−1)pf̃s,v (h−z
T̄−1
|B≤T̄−1)dh−z

T̄−1
|Jf̃−1

y
|,

where h−z := {s, v} and fs,v is
such that fs,v(st, vt, Bt−1, εs, εv) :=
[[fs(st, Bt−1, εs)]

>, [fv(vt, Bt−1, εv)]
>]>, it can then

be similarly derived the transformation from time T̄ − 1 to
time T̄ − 2:

pfy ((f−1
s,v ◦ f−1

y )(yT̄ )S×V |B<T̄−1)|Jf−1
y
||Jf−1

s,v
(ĥ−z,i
T̄

)|

=pf̃y ((f̃−1
s,v ◦ f̃−1

y )(yT̄ )S×V |B<T̄−1)|Jf̃−1
y
||Jf̃−1

s,v
(
ˆ̃
h−z,i
T̄

)|,
(8)

where ĥ−z,it := ([f−1
s,v ]T−t+1 ◦ f−1

y )(yT̄ )S×V with [f ]k :=
f ◦ f ◦ ...f︸ ︷︷ ︸

k

. Iteratively applying such a transformation, we
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would have that:

pfy ([([f−1
s,v ]T̄−t+1 ◦ f−1

y )(yT̄ )]S×V |B<T̄−1)|Jf−1
y
|=

pf̃y ([([f̃−1
s,v ]T̄−t+1 ◦ f̃−1

y )(yT̄ )]S×V |B<T̄−1)

∗ |Jf̃−1
y
|
Πt+1
j=T̄
|Jf̃−1

s,v
(
ˆ̃
h−z,ij )|

Πt+1
j=T̄
|Jf−1

s,v
(ĥ−z,ij )|

, (9)

which transforms to the latent space at time t at which the
x,A are observed. Note that the vt that generates the xt, At
is the same value, we have that

p̃Tt
h,Γ

t
h,lx,A

(xt, At|B<t) = p̃T̃t
h,Γ̃

t
h,l̃x,A

(xt, At|B<t),
(10)

where lx,A([xt, At]) := [[f−1
x (xt)]S×Z ]>, [f−1

A (At)]
>]>.

Taking logarithmic on both sides of Eq. (6), we have:

log |JfA(At)|+
dv∑
i=1

(
logCi(f

−1
A,i(At))− logQi(B<t)

)

+

dv∑
i=1

 kv∑
j=1

T vi,j(f
−1
A,i(At))Γ

A
i,j(B<t)


= log |Jf̃A(At)|+

dv∑
i=1

(
log C̃i(f̃

−1
A,i(At))− log Q̃i(B<t)

)

+

dv∑
i=1

 kv∑
j=1

T̃ vi,j(f̃
−1
A,i(At))Γ̃

v
i,j(B<t)

 . (11)

According to the assumption (2), we have

〈Tv(f−1
A (At)),Γ

v
(Bk,<t)〉

=〈T̃v(f̃−1
A (At)), Γ̃

v

(Bk,<t)〉+ b̃v, (12)

for all k ∈ [m] for some b̃v , where Γ̄(B) = Γ(B) −
Γ(B0,<t). Similarly, from Eq. (10), we have that

〈Tv(f−1
A (At)),Γ

v
(Bk,<t)〉+

〈Ts,z([f−1
x (xt)]S×Z),Γ

s,z
(Bk,<t)〉

=〈T̃v(f̃−1
A (At)), Γ̃

v

(Bk,<t)〉+

T̃s,z([f̃−1
x (xt)]S×Z), Γ̃

s,z

(Bk,<t)〉+ b̃v + b̃s,z, (13)

for some b̃s,z . Then we have:

〈Ts,z([f−1
x ](xt)]S×Z),Γ

s,z
(Bk,<t)〉

=〈T̃s,z([f̃−1
x (xt)]S×Z), Γ̃

s,z

(Bk,<t)〉+ b̃s,z, (14)

Similarly, the Eq. (5) can imply:

〈Ts,z,v(f−1
x (xt)),Γ

s,z,v
(Bk,<t)〉

=〈T̃s,z,v(f̃−1
x (xt)), Γ̃

s,z,v

(Bk,<t)〉+ b̃s,z + b̃v, (15)

Subtracting Eq. (14) from Eq. (15), we have

〈Tv([f−1
x (xt)]V),Γ

v
(Bk,<t)〉

=〈T̃v([f̃−1
x (xt)]V), Γ̃

v

(Bk,<t)〉+ b̃v. (16)

Denote f ty := [f−1
s,v ]T̄−t+1 ◦ f−1

y . Similarly, according to
Eq. (9), we have:

〈Ts,v([f ty(yT̄ )S×V),Γ
s,v

(Bk,<t)〉

=〈T̃s,v(f̃ ty(yT̄ )S×V), Γ̃
s,v

(Bk,<t)〉+ b̃s,v. (17)

Besides, we have

p̃Tt
h,Γ

t
h,lx,y

(xt, yT |B<t) = p̃T̃t
h,Γ̃

t
h,l̃x,y

(xt, yT |B<t), (18)

where lx,y([xt, yT ]) := [[f−1
x (xt)]

>
Z , [[f

t
y]−1(yT )]>]>.

Then we will have:

〈Tz([f−1
x (xt)]Z),Γ

z
(Bk,<t)〉

+ 〈Ts,v([[f ty]−1(yT )]S×V),Γ
s,v

(Bk,<t)〉

=〈T̃z([f̃−1
x (xt)]Z),Γ

z
(Bk,<t)〉

+ 〈T̃s,v([[f̃ ty]−1(yT )]S×V), Γ̃
s,v

(Bk,<t)〉+ b̃z + b̃s,v.

(19)

Subtracting Eq. (17) from Eq. (19), we have:

〈Tz([f−1
x (xt)]Z),Γ

z
(Bk,<t)〉

=〈T̃z([f̃−1
x (xt)]Z), Γ̃

z

(Bk,<t)〉+ b̃z. (20)

Subtracting Eq. (21), (16) from Eq. (15), we have:

〈Ts([f−1
x (xt)]S),Γ

s
(Bk,<t)〉

=〈T̃s([f̃−1
x (xt)]S), Γ̃

s

(Bk,<t)〉+ b̃s. (21)

Denote Mo :=
(
Γ
o
Γ
o,>)−1

Γ̃
o,>

in which Γ
o

:=

[Γ
o
(B2,<t), ...,Γ

o
(Bm,<t)], then applying the assumption

(1) and the result from [1], we have that the Mo for o ∈
{s, z, v} is invertible. Finally, since we have

Efx,fy (yT |xt, B≤t) = Ef̃x,f̃y (yT |xt, B≤t), (22)

then we have∫
gty([f−1

x (x̄t)]S×V)pεx(x− x̄)dx̄t

=

∫
g̃ty([f̃−1

x (x̄t)]S×V)pεx(x− x̄)dx̄t (23)

Applying the Fourier Transformation on both sides, we have

gty([f−1
x (x̄t)]S×V) = g̃ty([f̃−1

x (x̄t)]S×V).

The proof is completed.
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B. Posterior Reparameterization
The reparameterization of pψ is given by:

pψ(h<T |u<T , yT ) =
pψ(h<T , yT |u<T )

pψ(yT |u<T )

=
pψ(h<T ,u<T )pψ(yT |sT−1,vT−1)

pψ(yT |u<T )pψ(u<T )

=
pψ(h<T |u<T )pψ(yT |sT−1,vT−1)

pψ(yT |u<T )
, (24)

where the pψ(h<T |u<T ) can be further factorized using
mean-field approach due to our Markov assumption, i.e.,

pψ(h<T |u<T ) = Πt<T pψ(ht|ut,ht−1). (25)

Since the qφ is expected to mimic the behavior of pψ
(also p), it shares the same way of reparameterization with
pψ .

Then the reformulation in Eq. (24) and mean-field fac-
torization together imply that

qφ(h<T |u<T , yT ) =
qφ(yT |sT−1,vT−1)

qφ(yT |u<T )

∗Πt<T qφ(ht|ut,ht−1), (26)

where qφ(ht|ut,ht−1) ∼ N (µ(ht−1,ut),Σ(ht−1,ut)).

C. Personal Attributes and Clinical Measure-
ments

We also collect corresponding personal attributes and
clinical measurements for the 507 students in primary
school. The personal attributes contains 16 attributes of
each person, containing the Age, Gender, Father’s height,
Father’s weight, Mother’s height, Birth length, Height,
Head circumference, Weight, Waist circumference, Pulse,
Diastolic blood pressure, Systolic blood pressure, Num-
ber of parents with eyes, Close working hours, Outdoor
time. The clinical measurements contains 15 clinical mea-
surement indexes of visual acuity examination, containing
Diopter, Long-distance accommodation response, Short-
distance accommodation response, Oct parameter1, Oct pa-
rameter2, Oct parameter, Right eye naked vision, Periph-
eral refractive power, Right eye IOP, Axial length, Ante-
rior chamber depth, Corneal thickness, Corneal curvature1,
Corneal curvature2 and Corneal diameter of the correspond-
ing person.

D. Implementation Details
We crop and resize the raw retinal images into 128 ×

128 images. The clinical measurements and personal at-
tributes are normalized by mean-variance normalization.
The weights for classification loss, reconstruction loss, and

the KL loss are 1, 1, 0.1. All results have been rerun
five times for robustness. We use Adam as the optimizer.
The learning rate is set to 0.000005 with 0.9 decay rate af-
ter 10,30,50,80 epochs. The batch size is set to 16. We
use Xavier initialization for the model and train it in 300
epochs. For the classifier network at second stage, we use
two layers fully connected layer with the dimension set to
512. When training the new classifier for s + v and z, we
load our trained Causal-HMM model and fix its parame-
ters. The learning rate is set to 0.001 with 0.9 decay rate
after 10,30,50,80 epochs. The batch size is set to 16. We
train the classifier model in 100 epochs.

E. Robustness to the Dimension of Hidden
Variables

For robustness to the dimension of hidden variables, we
repeat for 5 times for different dimensions of s,v, z. Re-
sults are shown in Tab. 1. We can see that the different
dimensions did not affect the performance too much, with
mean ACC fluctuated within 1.61 and mean AUC fluctuated
within 4.48. This results show that our method achieves ro-
bust generalization to the dimension of hidden variables.

F. More Visualization Results
Due to the space limitation of the main text, we put more

visualization results here. The results are shown in Fig. 1.
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Figure 1. More visualization of learned feature maps by s and z on the test dataset. For each three line picture, the top row is the original
images, with the disease areas marked by red rectangles; the middle row is the feature maps of z by Grad-CAM; and the bottom row is
feature maps of s by Grad-CAM, with the found areas of disease are marked by blue rectangles. The red to green corresponds to high
to low response of corresponding hidden variable. As shown, the high response areas of s are concentrated on the optic disc, while the
response areas of z are distributed in other regions.

Methods z48-s64-v16 z192-s256-v64 z128-s96-v32 z96-s128-v32
Grades \Metric ACC AUC ACC AUC ACC AUC ACC AUC

G1 to G5 74.39 ± 1.42 84.15 ± 0.95 76.63 ± 2.75 84.78 ± 1.11 72.34 ± 5.86 84.02 ± 1.16 77.19 ± 1.69 85.43 ± 1.76
G1 to G4 69.16 ± 2.38 79.33 ± 1.57 71.40 ± 4.10 76.13 ± 6.17 68.78 ± 1.69 81.18 ± 1.02 72.89 ± 2.64 78.99 ± 1.53
G1 to G3 64.11 ± 2.52 72.54 ± 3.21 62.43 ± 1.38 65.75 ± 4.98 65.04 ± 3.99 73.07 ±5.11 62.43 ± 2.03 68.24 ± 2.93
G1 to G2 62.80 ± 7.81 63.98 ± 4.47 56.45 ± 3.41 57.46 ± 2.59 62.24 ± 0.84 69.78 ± 4.28 65.42 ± 1.47 65.09 ± 2.29
G2 to G5 77.38 ± 4.20 85.98 ± 3.52 75.51 ± 5.85 84.36 ± 1.63 78.13 ± 2.52 86.59 ± 1.04 76.26 ± 2.44 86.71 ± 0.89
G2 to G4 73.83 ± 4.90 80.96 ± 1.09 73.64 ± 4.92 77.64 ± 1.53 71.59 ± 2.99 81.15 ± 1.34 71.22 ± 5.17 80.62 ± 1.36
G2 to G3 67.85 ± 1.42 76.75 ± 1.12 62.99 ± 0.84 67.45 ± 3.26 68.04 ± 1.67 76.50 ± 1.31 66.91 ± 2.69 75.07 ± 1.31
G3 to G5 79.07 ± 4.05 86.53 ± 5.65 78.69 ± 3.46 85.23 ± 1.43 77.19 ± 2.34 86.79 ± 1.39 77.01 ± 3.41 86.22 ± 1.34
G3 to G4 71.77 ± 5.50 81.16 ± 1.51 71.40 ± 2.99 79.65 ± 0.53 74.02 ± 2.59 83.74 ± 1.15 71.77 ± 2.59 82.22 ± 1.29
G4 to G5 78.13 ± 2.99 86.63 ± 6.38 73.96 ± 5.34 86.07 ± 0.85 78.50 ±2.38 86.51 ± 0.54 78.13 ± 3.21 86.92 ± 1.53

Mean 71.85 ± 3.72 79.80 ± 2.95 70.31 ± 3.50 76.45 ± 2.41 71.59 ± 2.69 80.93 ± 1.83 71.92 ± 2.73 79.55 ± 1.62

Table 1. Changing dimensions of the hidden variables. Results of ACC (accuracy) and AUC (Area Under the Curve) on the test dataset on
10 time series settings.
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