Causal Hidden Markov Model for Time Series Disease Forecasting
Supplementary Material

A. Proof of Theorem 4.2

We post the Theorem 4.2 from the main text here for
completeness.

Theorem A.1 (Identifiability). We assume that f., fy, fa
are bijective. Denote g;(st, vt) := E(yr|st, v, Bj<t). Un-
der the following conditions:

1. {T} o,i j} are differentiable and non-zero almost every-
wherefor anyo € {s,v,z}andt <T.

2. For every t, there exists at least m = d x k + 1
with d := max(ds,dy,d,) and k := max(ks, ky, k)
values of Bi—o, i.e, B —q,..., By —0 such that
the [FZ(BQ_’t:()) — I‘Z(Bl,t:O); . I‘Z(Bm,tZO) —
Il (B1,1—0)] have full column rank and o € {s,v, z},

we have that if 0 and 0 give rise to the same observational

distribution, i.e., pg(x¢,yr,ve) = pj(xe, y7,v4) for any
T, yr, Uy and t < T, then there exists invertible matrices
{M}oc (s, 2y and vectors {b} oc (s 5.2} such that:

Disentangle :
To([f: s (@) = MTL([fy s (20) + 0 (1)
To((f () = MUTS(f v () + b, @)
To(f; Nz (20) = MUTL([f; Yz (@) + 02, 3)
Prediction :

95 ([f7 s (@)

=35 ([f s (). &)

Proof. To avoid the ambiguity, we denote the final step
as T. Denote 0 := {fu, fy,fa, fn, T4, T4}, where
o= {fs, fo. [}, T%, = {T,, T, TL} and T} :=
{I*, Tt T}, For 6 and @ that give rise to the same ob-
servational distribution, we have:

= P§($t|B<t)

= /pfz(xt|ht)pT§L,I‘§L(ht|B<t)dht

p0($t|B<t)

= /pfr(l‘t‘ht)prft ft (ht|B<t)dht
= pe, (20 — Z)pre e (fo (%) | B<o) | T g1 |dy
= e, (21 wt)pr Tt (f (iUt)|B<t)‘Jf;1|d$t

= (Dryry. 1, *Pe.) (@t B<t) = (Pge g 7, * Pe, ) (21| B<t)

= Flpry vy 2.1, (W) = Flpge g 7 [(w)epe, (w)
= Flpry ry . 1(@) = Flpge 5o 7, 1(w)
= Dy, vy, 1, (Tt B<t) = Pie g 7, (2| B<t), )

where the “J”,“F” stands for Jacobian matrix and
Fourier Transformation; the ¢(w) denotes the character-
istic function of ,; and the pr: 1t (z¢) is denoted as
pre e (ft (z1)|B<t)|J;-1|. Follow the same derivation,

h’" h
we can similarly obtain that

ﬁTE}srszA(At|B<t) :ﬁ’i‘;“)7f‘f)7fA (At|B<t)- (6)

For the label Y7, we have

pTst,rT fy(yT|B<T) ﬁTUTS7ff,SVf?/(yT|B<T)
= 1, (fy (W) Ber)lJ 1= oy, (Fy (y7) | Ber)| T 1|
(7)
where TUS .= {TT, TT} and I‘v . = {7 1T}, The

Eq. (7) transforms the equ1valence of the observational
space to the equivalence of the S x )V at time 1" — 1. Further,
since

oy i Br o, (b B )dhg? 170
= [og, By )i Browg, (| Ber )i 5

where  h™7 = {s,v} and f5, is
such that fsw(St,ve, Bi—1,€5,€0) =
[[fs(st, Be—1, 53)]T7 [fo(ve, Bi—1, €v)]T}T’ it can then
be similarly derived the transformation from time T—1to

time T — 2:
° Iy Nn)sxvIBer )l gl (hg™)
(B%Z,i)‘,

(3)
where Ay =" = ([f ] o f

D yr)sxy with [f]* =
fofo..f. Iteratwely applying such a transformation, we
——

pr, ((foa

=p;, ((fow o Fy Y yr)sxvIBeg—)| T[T 5
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would have that:

P, (U] 0 £ ) )]s xv | Bagoi)| 1=

P, (] 0 ) ()]s xv  Baroa)
1517 ()
fé'b'
Jz-1 9
*| fy |Ht+1 |Jf§v(h Z’L)" ()

which transforms to the latent space at time ¢ at which the
x, A are observed. Note that the v; that generates the x;, A;
is the same value, we have that

ﬁT;,r;,zx,A (w4, A¢|B<y) = ﬁi'ﬁvfi,,fm,A (zt, At| B<t),

(10)

where Iy a([ze, Ad) = [[fz " (@e)lsxz] T, [f1 (A)]T]T.
Taking logarithmic on both sides of Eq. (6), we have:

dy
log | J7, (A0)| + Y (log Ci(f3 (A1) — log Qi(B<1) )

i=1

i=1 =

dy v
+ (Z (fa(A0) (B<t))

dy

=log |/, (AN + Y (1og Cu(F1(An) — log Qi(B))

=1

+Z(Z J(Fai(A))D (B«)).m)

According to the assumption (2), we have
(T"(f4" (A1), 7”(Bk,<t)>
=(T(f3'(4)), T (Br,<t)) + bo,

for all k € [m] for some b,, where T'(B) = T'(B) —
I'(Bo,<¢). Similarly, from Eq. (10), we have that

(T(£5(A0). T (Bct))+
({17 la2) T (B
(T (1 (40)). T (Br<)+
T ([ (@)]swz), T (Bro<)) + Bo + bo.s,
for some b,_.. Then we have:
(T ([f7 Y (@) 2), T (Bi,<t))
(T ([ @)lsxz) T
Similarly, the Eq. (5) can imply:
(T2 (7 (@), T (Br<t)
=T (F @) T (Bruco)) + b + b

12)

13)

(Br,<t)) +bsz,  (14)

S,2,V

(15)

Subtracting Eq. (14) from Eq. (15), we have
T (Br,<t))
=(T"([fz '(2e)lv), T (Br.<e)) + bo.

Denote f) := [fo]
Eq. (9), we have:

(T ([fL(yr)sxv), T "
(T (P (yp)swv), T

Besides, we have

(16)

NT—t+1 f L Similarly, according to

(Bg,<t))

(Bk,<t)) + bs.v- a7

ﬁT;,F;,lI,y (z1,yr|B<t) = ﬁrjﬂz,fwfwl}yy (zt, yr|B<t), (18)

where Loy ([2e,y7]) = ([fs (@), [[£5] 7 )] TTT
Then we will have:
(T([fs (@) 2), T (Br,<t)
+ (T (1) (yr)lsxv), T (Br,<t))
=(T*([f; " (20)]2), T (Br,<t))
TR r)son), T (Brye) + b + by
(19)
Subtracting Eq. (17) from Eq. (19), we have:
(T*([f; (@)]z), T (Br,<t))
:<TZ<[f;1<xt>]z>fz(B )+b QO

<TS([f£1( ]s), T (Br,<t))
—(T([f; (@)]s), T (Br<t)) +bs. D)
Denote M, :— (ror”) "7 in which T =

=0

[T°(Ba,<t), .., T (Bm.<t)]> then applying the assumption
(1) and the result from [1], we have that the M, for o €
{s, z,v} is invertible. Finally, since we have

By, (e, B<i) = Ef 5 (yrlee, B<i),  (22)
then we have
[ o @lsve, (@ - 2)da
/ B @sxv)pe. (o — DAz (23)

Applying the Fourier Transformation on both sides, we have

g ([ @)]sxv) = G ([fa H (@)]sxv)-
The proof is completed. O



B. Posterior Reparameterization

The reparameterization of py, is given by:

py(her|ucr,yr) = py(h<r, yrlucr)
pw(yT|’Ua<T)
_py(har, ucr)py(yr|sr—1,v7-1)
- p¢(yT‘u<T)p¢(u<T)
pw(h<T|u<T>pw(yT|ST_17rUT_l)

= , 24
pw(yT|u<T) @9

where the py(h<r|u<r) can be further factorized using
mean-field approach due to our Markov assumption, i.e.,

py(her|uar) = Mecrpy (he|ug, he—1). (25)

Since the gy is expected to mimic the behavior of py
(also p), it shares the same way of reparameterization with

Py
Then the reformulation in Eq. (24) and mean-field fac-
torization together imply that

Q¢(yT|3T717 val)
q¢(yr|u<r)
* icrqey(helus, heq),  (26)

where g4 (he|wy, hi—1) ~ N (u(he—1, we), B(hi—1, uy)).

Q¢(h<T\U<T7yT) =

C. Personal Attributes and Clinical Measure-
ments

We also collect corresponding personal attributes and
clinical measurements for the 507 students in primary
school. The personal attributes contains 16 attributes of
each person, containing the Age, Gender, Father’s height,
Father’s weight, Mother’s height, Birth length, Height,
Head circumference, Weight, Waist circumference, Pulse,
Diastolic blood pressure, Systolic blood pressure, Num-
ber of parents with eyes, Close working hours, Outdoor
time. The clinical measurements contains 15 clinical mea-
surement indexes of visual acuity examination, containing
Diopter, Long-distance accommodation response, Short-
distance accommodation response, Oct parameter1, Oct pa-
rameter2, Oct parameter, Right eye naked vision, Periph-
eral refractive power, Right eye IOP, Axial length, Ante-
rior chamber depth, Corneal thickness, Corneal curvaturel,
Corneal curvature2 and Corneal diameter of the correspond-
ing person.

D. Implementation Details

We crop and resize the raw retinal images into 128 x
128 images. The clinical measurements and personal at-
tributes are normalized by mean-variance normalization.
The weights for classification loss, reconstruction loss, and

the KL loss are 1, 1, 0.1. All results have been rerun
five times for robustness. We use Adam as the optimizer.
The learning rate is set to 0.000005 with 0.9 decay rate af-
ter 10,30,50,80 epochs. The batch size is set to 16. We
use Xavier initialization for the model and train it in 300
epochs. For the classifier network at second stage, we use
two layers fully connected layer with the dimension set to
512. When training the new classifier for s + v and z, we
load our trained Causal-HMM model and fix its parame-
ters. The learning rate is set to 0.001 with 0.9 decay rate
after 10,30,50,80 epochs. The batch size is set to 16. We
train the classifier model in 100 epochs.

E. Robustness to the Dimension of Hidden
Variables

For robustness to the dimension of hidden variables, we
repeat for 5 times for different dimensions of s, v, z. Re-
sults are shown in Tab. 1. We can see that the different
dimensions did not affect the performance too much, with
mean ACC fluctuated within 1.61 and mean AUC fluctuated
within 4.48. This results show that our method achieves ro-
bust generalization to the dimension of hidden variables.

F. More Visualization Results

Due to the space limitation of the main text, we put more
visualization results here. The results are shown in Fig. 1.
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Figure 1. More visualization of learned feature maps by s and z on the test dataset. For each three line picture, the top row is the original
images, with the disease areas marked by red rectangles; the middle row is the feature maps of z by Grad-CAM; and the bottom row is
feature maps of s by Grad-CAM, with the found areas of disease are marked by blue rectangles. The red to green corresponds to high
to low response of corresponding hidden variable. As shown, the high response areas of s are concentrated on the optic disc, while the
response areas of z are distributed in other regions.

Methods 248-564-v16 2192-5256-v64 2128-596-v32 296-5128-v32
Grades \ Metric ACC AUC ACC AUC ACC AUC ACC AUC

Gl to G5 7439+ 142 84.154+095 | 76.63 £2.75 8478 £ 1.11 | 7234 =586 84.02+1.16 | 77.19 £1.69 8543 +1.76
Gl to G4 69.16 2238 7933+ 1.57 | 7140+ 410 76.13 +£6.17 | 68.78 =1.69 81.18 £1.02 | 72.89 £2.64 7899 +1.53
Gl to G3 64.11 £2.52 7254 +321 | 6243 £ 138 65.75+498 | 65.04 =399 73.07 £5.11 | 6243 £2.03 68.24 +293
Gl to G2 62.80 =7.81 6398 +447 | 5645 +3.41 5746+259 | 6224 +0.84 69.78 £4.28 | 6542 +£1.47 65.09 +2.29
G2 to G5 7738 2420 8598 +3.52 | 75.51 £5.85 8436+ 1.63 | 78.13+2.52 86.59+1.04 | 76.26 £2.44 86.71 +0.89
G2 to G4 73.83 £490 8096+ 1.09 | 73.64 =492 77.64+£153 | 71.59£299 81.15+1.34 | 71.22+5.17 80.62 + 1.36

G2 to G3 6785+ 142 76775+ 1.12 | 6299 £0.84 67.45£326 | 68.04 £1.67 7650+ 131 | 6691 +£2.69 75.07 £ 1.31
G3to G5 79.07 £4.05 86.53 £5.65 | 78.69 £=3.46 8523 £1.43 | 77.19+234 86.79£1.39 | 77.01 +£3.41 86.22 £ 1.34
G3 to G4 71.77+£550 81.16 = 1.51 | 71.40 £2.99 79.65+0.53 | 7402 £259 8374+ 1.15 | 71.77 £2.59 82.22 4+ 1.29
G4 to G5 78.13 £2.99 86.63 £6.38 | 73.96 =534 86.07 £0.85 | 78.50+2.38 86.51 £0.54 | 78.13 +3.21 86.92 £ 1.53

Mean 71.85+£3.72 79.80+£2.95 | 70.31 £3.50 76.45+241 | 71.59£2.69 8093 +£1.83 | 71.92+2.73 79.55+ 1.62

Table 1. Changing dimensions of the hidden variables. Results of ACC (accuracy) and AUC (Area Under the Curve) on the test dataset on
10 time series settings.



