
Supplementary Material: HCRF-Flow: Scene Flow from Point Clouds with
Continuous High-order CRFs and Position-aware Flow Embedding

A. Details about the inference of Con-HCRFs
In this section, we show how to derive the mean field inference algorithm of our proposed Con-HCRFs.
As introduced in Sec. 3.1, given a point cloud P with n points, we use Y = [y1,y2, ...,yn] to represent a matrix of 3D

displacements corresponding to all n points in P , where each yi ∈ R3. We model the conditional probability distribution
with the following density function

Pr(Y |P ) =
1

Z(P )
exp(−E(Y |P )), (A)

where E is the energy function and Z is the partition function defined as: Z(P ) =
∫
Y
exp(−E(Y |P ))dY .

To refine the predicted scene flow in both point level and region level, the energy function of our continuous high-order
CRFs is designed as:

E(Y |P ) =
∑
i

ψU (yi,P ) +
∑

i,j∈N (i)

ψB(yi,yj ,P ) +
∑
V∈Vset

∑
i∈V

ψSV (yi,YV−i,P ), (B)

According to the definition of each potential term in Sec. 3.2, combing Eq. (8), Eq. (9), Eq. (10) with Eq. B, the energy
function can be written as:

E(Y ) =
∑
i

‖yi − zi‖22 +
∑

i,j∈N (i)

C∑
c=1

αcK
(c)
ij ‖yi − yj‖

2
2 +

∑
V∈Vset

∑
i∈V

β‖yi − g(pi,YV−i)‖22. (C)

Here, ‖ · ‖2 denotes the L2 norm of a vector, zi is the initial 3D displacement at point i produced by PAFE module. N (i) is
the set of neighboring points of center point i, and K(c)

ij is a weight to specify the relation between the points i and j. Vset

is the set of rigid regions in the whole point cloud and YV−i is a matrix composed by the scene flow of points belonging to
the region V with the point i excluded. And the point set without the point i is denoted as V − i. g(pi,YV−i) is the rigid
displacement for the point i, whose computation process is given in Eq. (11), Eq. (14), and Eq. (15). αc and β are trainable
model parameters.

As discussed in Sec. 3.3, following [7], we adopt mean field theory [2] to approximate the distribution Pr(Y ) into a
product of independent marginals, i.e., Q(Y ) =

∏n
i=1Qi(yi). According to [1], by minimizing the KL-divergence between

Pr and Q, the solution for Q can be written as:

log(Qi(yi)) = Ej 6=i[Pr(Y )] + const, (D)

where Ej 6=i represents an expectation under Q distributions over all variable yj for j 6= i. Combing Eq. C and Eq. D, we



have:

log(Qi(yi)) = ‖yi − zi‖22 + 2
∑

j∈N (i)

C∑
c=1

αcK
(c)
ij Ej 6=i[‖yi − yj‖22] + βEj 6=i[‖yi − g(pi,YV−i)‖22] + const,

= (yi − zi)T(yi − zi) + 2
∑

j∈N (i)

C∑
c=1

αcK
(c)
ij Ej 6=i[(yi − yj)T(yi − yj)]

+ βEj 6=i[(yi − g(pi,YV−i))T(yi − g(pi,YV−i))] + const,

= (yT
i yi − 2yT

i zi) + 2
∑

j∈N (i)

C∑
c=1

αcK
(c)
ij (yT

i yi − 2yT
i Ej 6=i[yj ]])

+ β(yT
i yi − 2yT

i Ej 6=i[g(pi,YV−i)]) + const,

(E)

where Ej 6=i[yj ] is the expectation over variable yj ; and Ej 6=i[g(pi,YV−i)] is the expectation of the rigid displacement of the
point i. Here, we approximate Ej 6=i[g(pi,YV−i)] with g(pi,Ej 6=i[YV−i]), i.e., we use the expectations over variables YV−i
as input to compute the expectation of the rigid displacement of the point i by Eq. (11), Eq. (14), and Eq. (15). In this way,
the approximated log(Qi(yi)) can be written as:

log(Qi(yi)) = (yT
i yi − 2yT

i zi) + 2
∑

j∈N (i)

C∑
c=1

αcK
(c)
ij (yT

i yi − 2yT
i Ej 6=i[yj ]])

+ β(yT
i yi − 2yT

i g(pi,Ej 6=i[YV−i])) + const.

(F)

As shown in Eq. F, each log(Qi(yi)) is a quadratic form with respect to yi. Following [7], we represent it as a multivariate
normal distribution, and the mean field update for mean µ̇i and normalization parameter σi can be written as:

σi =
1

2(1 + 2
∑C

c=1

∑
j∈N (i) αcK

(c)
ij + β)

, (G)

µ̇i = 2σi(zi + 2

C∑
c=1

∑
j∈N (i)

αcK
(c)
ij µj + βg(pi,MV−i)). (H)

Here, MV−i is a set of mean µj for all j ∈ V − i; and σi is the diagonal element of covariance Σi. The covariance Σi is a
diagonal matrix and the diagonal elements are the same.

We observe that there usually exist hundreds of points in a supervoxel, which makes the rigid parameters computed on all
points in the supervoxel excluding the point i vary close to the rigid parameters computed on all points in the supervoxel, i.e.,
[R∗(MV−i), t

∗(MV−i)] is vary close to [R∗(MV), t
∗(MV)]. Thus, in practice, we approximate g(pi,MV−i) in Eq. H with

g(pi,MV), and the approximated mean µi is:

µi = 2σi(zi + 2

C∑
c=1

∑
j∈N (i)

αcK
(c)
ij µj + βg(pi,MV)). (I)

After this approximation, we only need to calculate a set of rigid motion parameters for each supervoxel rather than for each
point, which greatly reduces the time complexity.

B. Implementation details
In this section, we introduce the Implementation details of our HCRF-Flow. In the Con-HCRFs module, we utilize the

algorithm proposed in [3] for supervoxel segmentation. In [3], the task of supervoxel segmentation is formalized as a subset
selection problem and local information, such as surface normal and point position, is utilized to solve it. Some supervoxel
segmentation results are show in Fig. 1 and Fig. 2.

In the Con-HCRFs module, the desired point number of supervoxel, a hyperparameter to control the wanted supervoxel
size, is set to 140. In the pairwise term of the Con-HCRFs, we adopt two kinds of Gaussian kernel, i.e. C is 2. For a pair of



neighboring points i and j, we define the point coordinates as pi and pj , and define the surface normals as ni and nj . For
the first Gaussian kernel, we use the point coordinate as feature to evaluate the similarity between points i and j:

K
(1)
ij = exp(−‖pi − pj‖

2
2

2θ2p
). (J)

For the second Gaussian kernel, we adopt both point coordinate and surface normal as feature to evaluate the similarity
between points i and j:

K
(2)
ij = exp(−‖pi − pj‖

2
2

2θ2p
− ‖ni − nj‖22

2θ2n
). (K)

In our experiment, we set θp to 0.32 and θn to 0.7. When adopting the Con-HCRFs as a post-processing module, we set the
model parameter α1 to 0.5, α2 to 0.5, and β to 5. When jointly optimizing the Con-HCRFs with our PAFE, the above model
parameters in Con-HCRFs are trainable.

During training, we first train our PAFE with a multi-scale loss function used in [8]. The learning rate starts from 0.001
and is reduced by half at every 80 epochs. After 400 epochs, we add the Con-HCRFs to PAFE for fine-tuning. In fine-
tuning, the learning rate starts from 0.0001 and is reduced by half at every 80 epochs. The number of mean-field iterations in
Con-HCRFs is set to 1 for training and 3 for testing.

C. More Visualization
C.1. FlyingThings3D

We provide additional qualitative results on the FlyingThings3D [4] dataset in Fig. 1. The supervoxel segmentation results
are computed by [3].

C.2. KITTI

We provide additional qualitative results on the KITTI Scene Flow 2015 [6, 5] dataset in Fig. 2.
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(a) Supervoxel segmentation results (b) Scene flow estimation results 

Figure 1. Qualitative results on FlyingThings3D. (a) Supervoxel segmentation results. Different colors represent different supervoxel
regions. (b) Scene flow estimation results. Blue points are point cloud at frame t. Green points are the warped results at frame t+1 for the
points, whose predicted displacements are measured as correct by Acc3DR. For the incorrect predictions, we use the ground-truth scene
flow to replace them. And the ground truth warped results are shown as red points.



(a) Supervoxel segmentation results (b) Scene flow estimation results 

Figure 2. Qualitative results on KITTI. (a) Supervoxel segmentation results. Different colors represent different supervoxel regions. (b)
Scene flow estimation results. Blue points are point cloud at frame t. Green points are the warped results at frame t + 1 for the points,
whose predicted displacements are measured as correct by Acc3DR. For the incorrect predictions, we use the ground-truth scene flow to
replace them. And the ground truth warped results are shown as red points.


