
A. Implementation Details
A.1. Image Classification

In accordance with Stand-Alone Self-Attention [13] and
Axial Attention [15], we train all these models for 130
epochs utilizing the Stochastic Gradient Descent (SGD) op-
timizer with the momentum of 0.9 and the weight decay of
0.0001. The learning rate initiates from 0.8 and gradually
approaches zero following a half-cosine function shaped
schedule. The mini-batch size per GPU is set to 32 and the
training procedure is conducted on 64 GPU devices in to-
tal. The label smoothing regularization technique is applied
with the coefficient of 0.1.

A.2. Object Detection and Instance Segmentation

Following the widely-adopted pipeline, the input images
are resized to keep their shorter/longer side as 800/1333 pix-
els prior to being fed into the networks. The training pro-
cedure lasts for 12 epochs, using the Stochastic Gradient
Descent (SGD) optimizer with the momentum of 0.9 and
weight decay of 0.0001. The initial learning rate is set to
0.02 for Faster/Mask R-CNN and 0.01 for RetinaNet with
a linear warm-up period of 500 iterations, divided by 10 in
the 8th and 11st epoch. When necessary, we moderately ex-
tend the warm-up period and apply gradient clipping for the
sake of convergence stability. The detectors are trained on
8 Tesla V100 GPUs with 2 samples per GPU.

A.3. Semantic Segmentation

The urban scene images with a high resolution of 1024×
2048 are randomly resized, with their aspect ratios kept
in the range from 0.5 to 2.0, from which the input image
patches with the size of 512× 1024 are randomly cropped,
then undergo random horizontal flipping and a sequence
of photometric distortions as the data augmentation. We
adopt the training schedule of 80k iterations, and apply the
Stochastic Gradient Descent (SGD) optimizer with the mo-
mentum of 0.9 and weight decay of 0.0005. The learning
rate starts from 0.01 and anneals following the conventional
“poly” policy, which indicates the initial learning rate is
multiplied by (1 − iter

total iter )
0.9 in each iteration. The seg-

mentation networks are trained on 4 Tesla V100 GPUs with
2 samples per GPU. We apply synchronized Batch Normal-
ization [10] for more stable estimation of the batch statis-
tics.

B. Comparison to State-of-the-art on COCO
For both object detection and instance segmentation on

COCO, we compare our involution-based Mask R-CNN [4]
with the RedNet-50 backbone against other celebrated ar-
chitectures with ResNet-50 in Table 1. Our approach per-
forms substantially better than convolution-based Mask R-
CNN equipped with self-attention blocks, like NLNet [16],

Method APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75

baseline 38.4 59.2 41.9 35.1 56.3 37.3
+ NL [16] 39.0 61.1 41.9 35.5 58.0 37.4

+ RCCA [7] 39.3 - - 36.1 - -
+ GC @C5 [2] 38.7 61.1 41.7 35.2 57.4 37.4

+ DCN @C5 [20] 39.9 - - 34.9 - -
+ DGMN @C5 [19] 40.2 62.0 43.4 36.0 58.3 38.2

ours 40.8 62.3 44.3 36.4 59.0 38.5

Table 1: Quantitative comparison on the COCO 2017 validation
set. Our model could outstrip the previous methods with attention
or dynamic add-on, using reduced parameters and computational
cost. C5 indicates inserting the considered components at all the
3× 3 convolution layers of the last stage (conv5 x) in ResNet-50.

CCNet [7], and GCNet [2]. Additionally, our method out-
performs those of embedding dynamic mechanism into the
networks, including Deformable ConvNets (DCN) [20] and
Dynamic Graph Message passing Networks (DGMN) [19].
Note that all these referred approaches introduce extra pa-
rameters and FLOPs to the vanilla Mask R-CNN by append-
ing complementary modules while our proposed involution
operator even reduces the complexity of baseline by substi-
tuting convolution.

C. Visualization of Segmentation

Based on the semantic FPN [8] framework, we provide
some prediction results on the Cityscapes validation set in
Figure 1. Without the help of involution, pixels of large
objects are usually mistaken as other objects with high sim-
ilarity. For instance, the wall in the first image example
are mostly confused with building by the convolution-based
FPN. Some pixels of the bus in the third image example
are misclassified as truck or car, distracted by the occlusion
of the cyclist. In contrast, our involution-based FPN dis-
solves these ambiguities by dynamically reasoning in an en-
larged spatial range. Also, better consistency of inner pixels
of an object is observed in the segmentation results of our
method, reaping the benefits of involution.

D. Discussion

The topological connectivity [5, 6, 17, 18] and hyper-
parameter configurations [3, 12, 14] of convolutional neural
networks have undergone rapid evolution, but developing
brand new operators attracts little attention for crafting in-
novative architectures. In this work, we expect to bridge
this regret via disassembling the elements of convolution
and reassembling them into a more effective and efficient
involution. In the meanwhile, one of the current front edges
of neural architecture engineering is automatically search-
ing the network structures [1, 9, 11, 21, 22]. Our invention
can also fill the pool of search space for most existing Neu-
ral Architecture Search (NAS) strategies. In the near fu-
ture, we are looking forward to discovering more effective
involution-equipped neural networks with the help of NAS.



Figure 1: Qualitative comparison of segmentation results on the Cityscapes validation set. Each column represents an image example of
urban scene. The first and second row show the original image and ground truth. The last two rows demonstrate the prediction results of
baseline and our method, respectively. Highlighted in the yellow boxes are their apparent differences.

References

[1] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct
neural architecture search on target task and hardware. In
ICLR, 2019. 2

[2] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han
Hu. Gcnet: Non-local networks meet squeeze-excitation net-
works and beyond. In ICCV Workshops, 2019. 1

[3] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot
neural architecture search with uniform sampling. In ECCV,
2020. 2

[4] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 1

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2

[6] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In CVPR, 2017. 2

[7] Zilong Huang, Xinggang Wang, Lichao Huang, Chang
Huang, Yunchao Wei, and Wenyu Liu. Ccnet: Criss-cross
attention for semantic segmentation. In ICCV, 2019. 1

[8] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr
Dollar. Panoptic feature pyramid networks. In CVPR, 2019.
1

[9] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In ICLR, 2019. 2

[10] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu
Zhang, Kai Jia, Gang Yu, and Jian Sun. Megdet: A large
mini-batch object detector. In CVPR, 2018. 1

[11] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In ICML, 2018. 2

[12] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dollar. Designing network design
spaces. In CVPR, 2020. 2

[13] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan
Bello, Anselm Levskaya, and Jon Shlens. Stand-alone self-
attention in vision models. In NeurIPS, 2019. 1



[14] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model
scaling for convolutional neural networks. In ICML, 2019. 2

[15] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam,
Alan Yuille, and Liang-Chieh Chen. Axial-deeplab: Stand-
alone axial-attention for panoptic segmentation. In ECCV,
2020. 1

[16] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In CVPR, 2018. 1

[17] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaim-
ing He. Exploring randomly wired neural networks for im-
age recognition. In ICCV, 2019. 2

[18] Yibo Yang, Zhisheng Zhong, Tiancheng Shen, and Zhouchen
Lin. Convolutional neural networks with alternately updated
clique. In CVPR, 2018. 2

[19] Li Zhang, Dan Xu, Anurag Arnab, and Philip H.S. Torr. Dy-
namic graph message passing networks. In CVPR, 2020. 1

[20] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-
formable convnets v2: More deformable, better results. In
CVPR, 2019. 1

[21] Barret Zoph and Quoc Le. Neural architecture search with
reinforcement learning. In ICLR, 2017. 2

[22] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V.
Le. Learning transferable architectures for scalable image
recognition. In CVPR, 2018. 2


