
Supplementary Material for
QAIR: Practical Query-efficient Black-Box Attacks for Image Retrieval

This supplementary material provides more details about
the principles of loss landscapes (Fig. 2 in the paper) and
decision-based attacks. For comprehensive experiments, we
also provide further evaluations on defensive models (Sec.
4.2 in the paper) and ablation studies on SOP and In-Shop
datasets (Sec. 4.5 in the paper). Besides, we also plot a
scatter map to visualize the relationship between the Attack
Success Rate (ASR) metric and Recall@K drop for validat-
ing the rationality of the proposed attack goal experimen-
tally. More details about attacking real-world visual search
engine are also provided (Sec. 4.6 in the paper).

1. Loss Landscape
The visualization of loss landscape is implemented with

the toolbox provided by [10]. The loss is designed as fol-
lows:

loss(i, j) = L(x̂, y), s.t. x̂ = x+ i ∗ γ + j ∗ η (1)

where coordinate (i, j) determines the perturbation added
on input image. γ is a random direction sampled from Gaus-
sian distribution while η is the sign of gradient and can be
generated with:

η = sign(u) = sign(
∂(||f(x̂)− f(x)||2)

∂x̂
). (2)

Note that the gradient is directly derived from the target
model for its loss landscape visualization. As shown in Fig
2, compared with same perturbations in the Gaussian noise
direction, the loss gets to 0 faster in the adversarial direc-
tion, showing the model’s vulnerability against adversarial
examples. Besides, with the proposed relevance-based loss,
the loss gets to 0 with smaller adversarial perturbations (see
the red dotted line).

2. Decision-based Attack
Decision-based attacks is a kind of query-based attack

that requires only the decision of whether the attack suc-
ceeds. They usually treat an irrelevant or target image as a
start point and decrease the perturbation gradually to make
the adversarial similar to the input image visually during
optimization [1, 4, 2]. For example, OptAttack [3] starts
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Figure 8. Attacks results on defensive models, including robust
training (RT, left) and input transformations (IT, right).
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Figure 9. Scatter map of ASR and drop of Recall@K metric.

the attack from an image that lies in the target class with a
searched direction. Then it reduces the distance of the per-
turbed image towards the original input in input space with
binary search. Though it can always succeed in subverting
the outputs results in a great recall@K drop, it requires a
tremendous number of queries to achieve small perturba-
tions. Thus, attack success rate, which takes both recall@K
drop and mean perturbations into consideration, is a rela-
tively comprehensive metric. As shown in Fig. 11, though
the resulted adversarial examples can subvert the top-k re-
sults (which can lead to a high Recall@K drop), the re-
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Figure 10. Query results before and after attacks. Images in the first column are the queries. Images in the second column are the
adversarial perturbations added on original images. Darker perturbation images mean smaller disturbances needed, which in turn indicates
that the attacks tend to be more effective. The red boxes represent the correctly matched images.

Attacks Recall@K before attacks Recall@K after attacks AQ ASR DRR@11 10 20 30 40 50 1 10 20 30 40 50

BN-Inception [9]

Multi-Similarity [14] 0.853 0.959 0.965 0.973 0.976 0.979 0.008 0.044 0.132 0.256 0.312 0.352 35.19 0.92 99.06%
Contrastive [7] 0.832 0.956 0.976 0.980 0.984 0.984 0.008 0.068 0.124 0.260 0.320 0.372 38.93 0.90 99.04%

HardMining [13] 0.868 0.980 0.988 0.992 0.996 0.996 0.028 0.112 0.208 0.336 0.412 0.464 57.32 0.82 96.77%
Lifted [12] 0.828 0.944 0.960 0.972 0.976 0.988 0.032 0.080 0.172 0.292 0.380 0.436 42.51 0.88 96.14%

DenseNet121 [8]

Multi-Similarity [14] 0.864 0.964 0.964 0.976 0.980 0.988 0.028 0.156 0.204 0.232 0.280 0.292 19.34 0.98 96.76%
Contrastive [7] 0.868 0.948 0.960 0.964 0.976 0.976 0.016 0.112 0.148 0.184 0.220 0.232 17.85 0.97 98.16%

HardMining [13] 0.852 0.968 0.980 0.988 0.988 0.988 0.036 0.148 0.200 0.252 0.292 0.320 17.16 0.97 95.77%
Lifted [12] 0.828 0.952 0.964 0.976 0.984 0.984 0.044 0.152 0.228 0.276 0.320 0.340 30.49 0.92 94.69%

Table 5. Recall@K performances on In-Shop dataset before and after attacks.

Attacks Recall@K before attacks Recall@K after attacks AQ ASR DRR@11 10 100 1000 1 10 100 1000

BN-Inception [9]

Multi-Similarity [14] 0.729 0.855 0.932 0.978 0.016 0.064 0.472 0.832 35.45 0.90 97.81%
Contrastive [7] 0.701 0.839 0.920 0.975 0.008 0.028 0.440 0.792 27.57 0.94 98.86%

HardMining [13] 0.723 0.861 0.937 0.980 0.016 0.032 0.428 0.824 31.73 0.94 97.79%
Lifted [12] 0.703 0.839 0.923 0.974 0.008 0.068 0.472 0.832 36.37 0.91 98.86%

DenseNet121 [8]

Multi-Similarity [14] 0.720 0.824 0.904 0.964 0.024 0.140 0.312 0.612 20.97 0.96 96.67%
Contrastive [7] 0.692 0.808 0.908 0.956 0.040 0.136 0.356 0.660 19.62 0.96 94.22%

HardMining [13] 0.706 0.842 0.927 0.976 0.048 0.144 0.340 0.620 19.10 0.97 93.20%
Lifted [12] 0.704 0.808 0.900 0.964 0.088 0.216 0.444 0.728 25.99 0.94 87.50%

Table 6. Recall@K performances on SOP dataset before and after attacks.

quired perturbations from OptAttack, Sign-Opt and HSJA
are much more larger than ours. Besides, these perturba-
tions are also beyond the perturbation budgets, leading to a
low attack success rate.

3. Comparison on Defensive Models

We further validate the effectiveness of the proposed
method against several defensive models on CUB-200
dataset, including the classical robust training (RT) [5] and
input transformation (IT) [6]. The results in Fig. 8 show
that compared to state-of-the-art methods, our attack can
achieve a much higher attack success rate under the same



perturbation budgets. This demonstrates the superiority of
our method on attacking defensive models.

4. Ablation Study on More Datasets
Tab. 5 and Tab. 6 show more detailed experiments of at-

tacking various deep metric learning models on In-Shop and
SOP datasets, respectively. It can be found that the pro-
posed query-based attack can achieve a high attack success
rate on both datasets, demonstrating its effectiveness in dif-
ferent scenarios.

5. Attack Goal and Objective Function
Under the black-box setting, the attack success rate can

only be calculated based on the observation of retrieved list.
The rationality needs to be further explored. For this, we
plot a scatter map of ASR and drop of Recall@K (obtained
based on the true label), which is shown in Fig. 9 (under the
same perturbations). It can be found that the ASR is in pro-
portion to Recall@K drop, indicating the rationality of our
attack goal experimentally. When comparing with state-of-
the-art methods, the ASR metric takes both recall@K drop
and maximum perturbations into consideration, making it a
relatively comprehensive metric.

For the proposed bidirectional relevance-based loss, we
provide some examples to make it more comprehensi-
ble. Suppose only the top three candidates are considered.
Given an input image x, the target image retrieval system
will output the top three similar images {a1, a2, a3} and
others {b4, b5, b6, ...}. After attacks, there are several kinds
of situations:

• {a1, b4, b5} and {a3, b4, b5}. In general, higher rank
denotes higher relevance to the input image x. Thus,
the loss of situation {a1, b4, b5} should be greater than
{a3, b4, b5}. Thus, the rank-sensitive relevance before
attacks should be considered.

• {a3, a2, a1}. The loss of situation {a3, a2, a1} should
be smaller than {a1, a2, a3} since a1 is the most rele-
vant one to input image x. The lower it ranks, the more
successful the attack is. Thus, how the candidates is
ranked after attacks should also be considered.

6. Visualization Comparison
Fig. 10 shows the top 8 retrieved images of different

input images (the first column). Images in the red boxes
are from the same category with the input query. It can be
found that after 10,000 queries, the perturbations generated
by other methods are still much greater than ours (darker
perturbation images indicate smaller perturbations), which
only needs 200 queries. Besides, though all the adversar-
ial examples can subvert the top-k retrieved results success-
fully, the retrieved results produced by other methods may

Figure 11. Query results on Bing Visual Search. Images in
red boxes are adversarial examples generated with the proposed
method. Images in the first column are queries while others are
corresponding search results.

contain images that share the same categories (red boxes)
with the original ones. On the contrary, our method tries to
push the adversarial example further from the original clus-
ter in the feature space, which can relieve the inconsistency
between attack goal and true labels.

7. Attacks on Real-world Visual Search Engine
7.1. Implementation Details

Unlike most existing transfer attacks, query-attack that
we study in this paper needs to query search engine con-
stantly. Bing Visual Search is the only image retrieval API
that can be automatically queried. Thus, we only provided
attack results on Bing Visual Search.

Since Bing Visual Search is a frequently-used search en-
gine and it has a huge amount of data in its gallery. Given an



input image x, there are thousands of similar images with x.
Thus, we need to take more candidates into consideration.
For this, we setK = 100 to ensure the adversarial examples
far away enough from the original clusters in the feature
space. Besides, the max query time and perturbation are set
to 200 and 0.1. We only employ ResNet50 pretrained on
ImageNet as our substitute model since it can make a good
performance already.

7.2. Attack Results

As shown in Fig. 11, the generated adversarial examples
can mislead the Bing Visual Search to output images actu-
ally irrelevant to the input image successfully with human-
imperceptible perturbations. To quantitatively measure the
performance, we randomly sample 1000 images from Ima-
geNet for testing and the proposed method can achieve 98%
attack success rate with only 33 queries on average. This
demonstrates the practicability of our attack in real-world
scenarios.

We have also attached a video recording the image re-
trieval results on Bing Visual Search before and after at-
tacks. It should be noted that Bing Visual Search updates
their engine frequently. Thus some generated adversarial
examples may be ineffective after a few days.
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Figure 12. Failure attack examples. Image in red box is adversar-
ial example generated with the proposed method. We can find that
the retrieved images are still relevant to input image after attack
even when its top-k images are subverted.

Methods MQ
CUB-200 SOP In-Shop

ASR AQ ASR AQ ASR AQ
OptAttack [3]

10,000
0.04 9708 0.288 7931 0.948 3017

Sign-Opt [4] 0 8833 0.372 6746 0.492 5564
HSJA [2] 0 10,000 0.420 5888 0.472 5379

Ours
200 0.69 93 0.904 35 0.916 35
500 0.72 180 0.918 64 0.924 58
1000 0.73 315 0.920 109 0.924 96

Table 7. Attack performance under different max query limitations
(MQ). Higher attack success rate (ASR), smaller average queries
(AQ) indicate stronger attacks.

8. Limitations and Future Work
One limitation of the proposed method is that the attack

may fail in practice even when the top-k images are sub-

verted, especially when the number of truly relevant images
in the gallery is large, as shown in Fig. 12. Apart from
this, we also find the potential of the proposed QAIR may
be limited due to the leverage of the substitute model. In
OptAttack [3] or traditional RGF attack [11], they require
lots of queries due to the randomness during optimization.
Though we can improve the attack efficiency by leverag-
ing the transfer-based priors as the guidance for optimiza-
tion, the attack may fail due to the lack of adjustments of
substitute model during attacks. Under this circumstance,
more queries may not help much, as shown in Tab. 7. In
future work, we aim to go further for a more advanced
objective and interactive model stealing method towards
stronger black-box attacks for developing robust image re-
trieval models.

We would like to thank Bing Visual Search for making their
API public and available.
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