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A. Appendix

In this appendix, we provide the following details to sup-
port the main text:

Section A.1: Descriptions of the 4 downstream tasks.

Section A.2: Training details of pre-training and fine-
tuning.

Section A.3: Comparison results on the combined group of
checkpoints in Groups I, II and III.

Section A.4: Another group of checkpoints with

ResNet101s at different pre-training stages.
Section A.5: More experiment results on Groups I-IV.

Section A.6: Neural checkpoints ranking on object detec-
tion and instance segmentation.

A.1. Downstream tasks

In this section, we describe the datasets used for the
downstream tasks as shown in Table 1. More specifically,
Caltech101 [2] contains 101 classes, including animals, air-
planes, chairs and etc, the image size varies from 200 to 300
pixels per edge. Flowers102 [6] have 102 classes, with 40
to 248 training images per class, each image has at least 500
pixels. Patch Camelyon [10] contains 327,680 images of
histopathologic scans of lymph node sections with image
size of 96x96, which is collected to predict the presence of
metastatic tissue. Sun397 [1 1] is a scenery benchmark with
397 classes, including cathedral, staircase, shelter, river, or
archipelago. There are at least 100 images per class. The
images are in 200x200 or higher resolutions. We believe the
dataset portfolio well represents a broad set of vision tasks.

A.2. Hyper-parameter Sweep

We adopt the similar experiment setting as in [12] to
fine-tune the neural networks on the downstream tasks.
Specifically, we set the batch size to 512 and use SGD
with momentum of 0.9. We do not use weight decay for
fine-tuning, and we set it to be 0.01 times the learning
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rate [4] when training from scratch. We perform per-task
hyper-parameter search. For each task, we sweep the learn-
ing rate in {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2,
0.5} and the training steps in {2500, 5000, 10000, 15000,
20000, 400000}. We incorporate inception data augmen-
tation [8] for pre-training checkpoints and we do not use
data-augmentation when we fine-tune the neural networks
on the downstream tasks to emphasize the effect of transfer
learning.

A.3. Comparison results on all checkpoints in
Groups L II, ITI

To obtain a comprehensive analysis, we also consolidate
the checkpoints from Group I, I and III into one group (in-
cluding 41 checkpoints in total) and then apply the ranking
methods on it. Table 2 shows the comparison results. The
results further evaluate our observations in Section 4 of the
main text. N'LEEP performs consistently well on the big
group of checkpoints with lowest computation cost. Lin-
ear separability of the feature representation is also a good
indicator for ranking a large group of neural checkpoints.
Fine-tuning with early stopping and mutual information es-
timator produce poor correlations. The ranking qualities of
different ranking methods on the large group of checkpoints
are in sharper contrast than on small groups. For instance,
the Pearson’s 7 of N'LEEP vs. Finetune (5 epochs) on the
large group is 83.71 vs. 27.84 but they perform 72.84 vs.
68.47 on Group II (Table 2 in the main text). It indicates that
NLEEP is a low-variance and low-bias checkpoint ranking
estimator, while early stopping may produce high-variance
ranking results.

A 4. Group IV: Supervised ResNet101s

We incorporate another group of checkpoints, includ-
ing 12 ResNetl101 [3] models pre-trained by fully super-
vised learning on ImageNet [ 1], iNaturalist [9], and Places-
365 [13]. We obtain the checkpoints in the same way as
we have done for Group II, but with ResNet101 architec-
ture. We want to study how different model architecture
and model size affect the ranking quality.



Figure 1 and Table 7 show the fine-tuning accuracy on
4 downstream tasks. The relative fine-tuning accuracies
are similar to the accuracies on Group II. We also observe
that a converged checkpoint does not necessarily demon-
strate the best performance on the downstream tasks (cf.
Img-270k is better than Img-300k on Flowers102 [6]). Ta-
ble 3 shows the comparison results of ranking methods on
those checkpoints. The relative performance among the
ranking methods is similar to what they do in Group II
(Table 2 in the main text). Except that they perform bet-
ter on ResNetl0ls, e.g., Linear (converged) can achieve
68.60 in terms of Kendall’s 7 on ResNet50s versus 73.48 on
ResNet101s, A'LEEP can get 72.84 in terms of Pearson’s r
on ResNet50s versus 83.22 on ResNet101s. The observa-
tion reveals that the ranking of deeper checkpoints may be
more predictable than shallow ones.

A.5. More experimental results on Groups I-IV

We show more comparison results on NeuCRaB in this
section. Figures 2 and 3 show the best fine-tuning accura-
cies offset by their mean (for better visualization) on Groups
IT and III, respectively. Table 4, 5, 6, 7 demonstrate the ab-
solute best fine-tuning accuracies on Groups I-IV, respec-
tively.

A.6. Neural checkpoint ranking for object detection
and instance segmentation

We also evaluate on object detection and in-
stance/semantic segmentation and show the results in
Tables 8. Specifically, we incorporate the recent self-
supervised MoCo models (MoCovl, MoCov2, MoCov2-
800epoch) and a ResNet50 model (supervised pretrained
on ImageNet) into a new group of checkpoints. We evaluate
checkpoint ranking on Pascal VOC (object detection) and
Cityscapes (instance segmentation). In order to adapt
NLEEP to detection and segmentation tasks, we assign
multiple ground truth labels for one image if it includes
multiple object categories and extract the image-level
features to perform GMM. We adapt AN'LEEP to detection
and segmentation tasks by assigning multi-labels to images
with multiple object categories. The experiment results
demonstrate that N'LEEP consistently outperforms the
fine-tune and linear evaluation based approachs. We plan
to include more diverse downstream tasks in NeuCRaB to
facilitate future research.
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Dataset Training | Evaluation | Number of Classes

Caltech101 [2] 3060 6084 101

Flower102 [6] 2040 6149 102

Patch-Camelyon [10] | 262144 32768 2

Sun397 [11] 76128 10875 397

Table 1. Statistics of the datasets associated with the downstream tasks

Method Recall@1 | Rel@1 | Recall@3 | Rel@3 | Pearson | Kendall | GFLOPS
Linear (1 epoch) 0.00 99.13 25.00 99.46 22.30 13.42 4.45E4
Linear (5 epochs) 0.00 99.13 25.00 99.21 42.99 31.64 4.47TE4
Linear (converged) 25.00 99.42 50.00 99.73 76.22 61.22 4.79E4
Fine-tune (1 epoch) 0.00 96.69 0.00 98.16 3.84 6.50 5.85E5
Fine-tune (5 epochs) 0.00 99.49 0.00 99.49 27.20 27.16 3.84E6
MI («=0.01) [7] 0.00 77.50 0.00 81.44 1.12 7.16 1.52E5
MI (a=0.50) 0.00 66.51 0.00 90.07 -4.05 -14.22 1.52E5
MI w/ PCA (a=0.01) 0.00 89.18 50.00 99.84 12.14 20.99 5.57E4
MI w/ PCA (a=0.50) 0.00 97.07 0.00 98.70 -14.03 -2.39 5.57E4
LEEP [5] - - - - - - -
NLEEP 50.00 99.47 50.00 99.78 83.71 68.18 12.86

Table 2. Comparison results on all checkpoints in Group I, II, TIT (GFLOPS excludes a forward pass on training data, which takes 2.73E5
GFLOPS shared by all).
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Figure 1. Difference between the fine-tuning accuracy of each checkpoint and the mean fine-tuning accuracy on Group IV. Black bar means

From-Scratch. Red, green and orange bars represent ImageNet models, iNaturalist models and Places365 models, respectively. Img-90k
means the checkpoint obtained by early stopping at the 90k-th iteration on ImageNet, and so on.

Method Recall@1 | Rel@1 | Recall@3 | Rel@3 | Pearson | Kendall | GFLOPS
Linear (1 epoch) 0.00 98.58 25.00 98.99 46.75 27.27 1.021E5
Linear (5 epochs) 0.00 98.72 75.00 99.95 59.27 41.32 1.023E5
Linear (converged) 25.00 99.81 75.00 99.95 82.17 73.48 1.06E5
Fine-tune (1 epoch) 0.00 96.19 25.00 99.34 29.64 21.21 1.34E6
Fine-tune (5 epochs) 75.00 99.98 75.00 99.94 69.19 50.00 8.81E6
MI («=0.01) [7] 0.00 97.25 75.00 98.46 12.96 13.21 1.62E5
MI (=0.50) 25.00 98.60 50.00 99.54 30.16 18.21 1.62E5
MI w/ PCA (a=0.01) 0.00 99.85 75.00 99.95 51.85 4891 5.58E4
MI w/ PCA (a=0.50) 0.00 95.99 50.00 98.41 48.64 44.31 5.58E4
LEEP [5] 25.00 99.52 75.00 99.72 54.54 46.43 378.31
NLEEP 75.00 99.98 100.00 100.00 | 83.22 73.80 12.95

Table 3. Comparison results on Group IV (GFLOPS excludes a forward pass on training data, which takes 6.27E5 GFLOPS shared by all).
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Figure 2. Difference between the fine-tuning accuracy of each checkpoint and the mean fine-tuning accuracy on Group II. Black bar means
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From-Scratch. Red, green and orange bars represent ImageNet models, iNaturalist models and Places365 models, respectively. Img-90k

means the checkpoint obtained by early stopping at the 90k-th iteration on ImageNet, and so on.
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Figure 3. Difference between the fine-tuning accuracy of each checkpoint and the mean fine-tuning accuracy on Group III. The colors of

bars represent the models trained with different architectures. Brown: Inception-ResNet-V2. Red: Inception family. Green: MobileNet

family and their variants. Orange: ResNet-v1 family.
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Caltech101 51.44 | 4199 4237 7388 51.83 5491 73.15 | 78.85 79.09 80.02 8791 | 92.73 9277 | 9442 94.5 87.00 | 87.27
Flowers102 | 49.28 | 17.46 17.96 69.67 26.05 2698 61.72 | 77.69 78.08 78.87 8329 | 9146 91.28 | 93.05 | 93.91 | 94.47 | 82.79
Camelyon 81.59 | 80.55 79.71 80.73 80.73 80.87 82.14 | 85.43 86.58 85.27 85.81 | 85.09 85.83 | 85.37 | 84.98 | 83.33 | 84.77
Sun397 4797 | 30.5 31.52 4499 37.56 39.85 47.36 | 59.71 58.06 58.05 60.00 | 66.74 67.27 | 70.98 | 70.06 | 66.65 | 73.45

Table 4. Absolute fine-tuning accuracy on Group L.

Dataset
From-Scratch|

Img-90k
Img-180k
Img-270k
Img-300k
Inat-90k
Inat-180k
Inat-270k
Inat-300k
Pla-60k
Pla-120k
Pla-180k
Pla-200k

Caltech101 | 51.44 | 92.08 93.55 94.18 94.73 | 85.69 86.54 87.66 87.43 | 8491 87.11 8&8.01 87.48
Flowers102 | 49.28 | 88.8 9196 9136 93.6 | 9271 9432 9478 94.6 | 79.15 8247 8436 82.88
Camelyon 81.59 | 85.73 8597 863 8543 | 8548 86.12 8437 83.75 | 85.67 85.13 85.16 854
Sun397 4797 | 66.56 70.07 70.69 71.24 | 63.63 6624 66.84 6687 | 68.14 7234 7325 73.6

Table 5. Absolute fine-tuning accuracy on Group II.

Inception-ResNet-v2

Dataset
Inception-v1
Inception-v2
Inception-v3
Inception-v4
MobileNet-v1
MobileNet-v1-025
MobileNet-v2
MobileNet-v2-035
MobileNet-v3-large
MobileNet-v1-small
ResNet-v1-101
ResNet-v1-50

Caltech101 | 94.02 | 93.13 93.77 9476 94.55 | 93.15 86.59 93.02 88.28 93.02 90.52 | 94.42 94.09
Flowers102 | 93.39 | 91.5 9225 93.07 93.31 | 92.69 84.44 92.68 87771 9281 89.01 | 93.03 92.72
Camelyon | 86.23 | 86.38 85.18 86.58 86.0 | 86.91 84.42 8575 8493 86.64 84.77 | 8549 86.35
Sun397 71.52 | 67.82 6995 7123 7141 | 69.03 56.88 6922 627 69.61 64.63 | 7274 71.44

Table 6. Absolute fine-tuning accuracy on Group III.

Dataset
From-Scratch
Img-90k
Img-180k
Img-270k
Img-300k
Inat-90k
Inat-180k
Inat-270k
Inat-300k
Pla-60k
Pla-120k
Pla-180k
Pla-200k

Caltech101 | 54.47 | 92.56 9391 9423 9432 | 86.68 87.64 88.51 88.28 | 86.22 88.09 88.44 88.14
Flowers102 | 49.85 | 89.13 9245 9237 9147 | 93.46 9544 957 9526 | 79.96 84.05 84.72 84.62
Camelyon 82.14 | 8495 85.81 85.87 8535 | 84.64 84.87 85.08 84.16 | 86.03 8559 85.13 85.09
Sun397 46.87 | 67.36 70.83 71.41 7144 | 64.6 6697 6744 6742 | 68.78 7321 7422 7424

Table 7. Absolute fine-tuning accuracy on Group IV.

Method Recall@1 | Pearson | Kendall Method Recall@1 | Pearson | Kendall
Linear (1 epoch) X 18.45 -33.33 Linear (1 epoch) X 23.55 -33.33
Linear (5 epoch) X 40.77 0.00 Linear (5 epoch) X 55.43 0.00
Linear (converged) v 61.57 54.77 Linear (converged) v 68.32 33.33
Fine-tune (1 epoch) X 20.55 0.00 Fine-tune (1 epoch) X 38.85 -33.33
Fine-tune (5 epoch) v 50.46 33.33 Fine-tune (5 epoch) X 51.22 33.33
NLEEP v 66.59 66.67 NLEEP v 82.66 66.67

Table 8. Left: Checkpoint ranking results on the Pascal VOC Object Detection Benchmark (trained on VOC 2007 train+val + VOC 2012
train+val, tested on VOC 2007 using AP). Right: Checkpoint ranking for Cityscapes instance segmentation.



