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In this supplementary material, we first provide more
details about the network shrinkage algorithm in Sec. 1.
Then we describe the training protocols used for training
networks on different tasks including image classification,
visual tracking, and image restoration in Sec. 2. For a bet-
ter understanding of the hypernetworks, the demo code is
provided in Sec. 3. Finally, more experimental results are
given in Sec. 4.

1. More Details
1.1. Handling different layers

In addition to the normal convolutional layers, the hy-
pernetwork can be applied to other layers including depth-
wise convolution and batch normalization. Special consid-
eration needs to be made for depth-wise convolution. For
depth-wise convolution, the dimensionality of the weight
parameter along the input channel is 1. Thus, the latent vec-
tor controlling the input channel has only one element and
shrinkage of this latent vector is avoided during the network
shrinkage phase. For the normalization layers like Batch-
Norm, they are forced to have the same number of output
channels as their preceding convolutional layers. The linear
layers are pruned along with the preceding convolutional
layer such that the same number of channels are removed.

1.2. Pruning according to gradients

The proximal gradient descent (PGD) algorithm in
DHP [&] prunes the latent vectors according to the magni-
tude of their elements. Yet, the problem of PGD algorithm
is that it might result in unbalanced pruning. For example,
in Table 1, for the DHP results on MobileNetV2, the num-
ber of parameters increases despite the reduction of FLOPs.
This is because larger percentage of channels in the lower
layers are pruned, which accounts for more FLOPs but less
parameters compared with those in the higher layers. On
the contrary, at initialization of the hypernetwork, the range
of the gradients of the latent vectors are relatively balanced

across the layers. Thus, gradient magnitude of the latent
vectors are chosen as the pruning criterion.

2. Training Protocol

The code is implemented in PyTorch [10]. For ImageNet
experiments, the networks are trained with 4 Nvidia V100
GPUs. For the other experiments, the training is conducted
on Nvidia TITAN Xp GPUs. The training protocols for dif-
ferent tasks are explained as follows.

2.1. Image classification

ImageNet

The ImageNet2012 dataset has 1000 classes. The train-
ing set contains 1.2 million images while the test set con-
tains 50,000 image with 50 image for every class. Stan-
dard image normalization and data augmentation method
are used. The training continues for 150 epochs. The ini-
tial learning rate is 0.05. Cosine learning rate decay is used.
The weight decay factor is set to 4e~°. SGD optimizer is
used during the training. The batch size is 256.

Tiny-ImageNet

Tiny-Imagenet is a simplified version of ImageNet2012.
It has 200 classes. Each class has 500 training images and
50 validation images. And the resolution of the images is
64 x 64. The images are normalized with channel-wise
mean and standard deviation. Horizontal flip is used to aug-
ment the dataset. The networks are trained for 220 epochs
with SGD and an initial learning rate of 0.1. The learning
rate is decayed by a factor of 10 at Epoch 200, Epoch 205,
Epoch 210, and Epoch 215. The momentum of SGD is 0.9.
Weight decay factor is set to 0.0001. The batch size is 64.

CIFAR

CIFAR [7] dataset contains two datasets i.e. CIFAR10
and CIFAR100. CIFARIO contains 10 different classes.
The training subset and testing subset of the the dataset con-
tain 50,000 and 10,000 images with resolution 32 x 32, re-
spectively. CIFAR100 is the same as CIFAR10 except that
it has 100 classes. All of the images are normalized using



Dataset Network Method | Top-1 Error (%) | FLOPs [G]/Ratio (%) | Params [M]/ Ratio (%)
Baseline 23.28 4.1177/100.0 25.557 /100.0
MutualNet [16] 21.40 4.1177/100.0 25.557/100.0
ResNet50 [3] LW-DNA 23.00 3.7307 / 90.60 23.741/92.90
MetaPruning [9] 23.80 3.0000/ 72.86 -
ImageNet [2] AutoSlim [17] 24.00 3.0000/72.86 23.100/90.39
RegNet [TT] Baseline 23.05 4.0005/100.0 22.1187100.0
X-4.0GF LW-DNA 22.74 3.8199 /95.49 15.285 /69.10
. Baseline 34.91 0.06127100.0 3.1087100.0
MobileNetV3 small L1 | w pNa 34.84 0.0605 / 98.86 3.049/98.11
Baseline 51.87 0.0478 / 100.0 3.412/100.0
. Baseline KD 48.00 0.0478 / 100.0 3.412/100.0
MobileNetV1 [3] DHP KD 46.70 0.0474 1 99.16 2.267166.43
LW-DNA 46.44 0.0460 / 96.23 1.265 /37.08
Baseline 7438 0.09307 100.0 2.4807100.0
. Baseline KD 41.25 0.0930 / 100.0 2.480 /100.0
MobileNetV2 [17] DHP KD 41.06 0.0896 / 96.34 2.662/107.34
Tiny-ImageNet LW-DNA 40.74 0.0872/93.76 2.230/89.90
Baseline 4553 0.0860 7 100.0 Z1217100.0
MobileNetV3 [4] Baseline KD 38.21 0.0860 / 100.0 4.121/100.0
large DHP KD 38.14 0.0856 /99.53 3.561/86.42
LW-DNA 3745 0.0797 /92.67 3.561/86.43
Baseline 7755 0.02077100.0 2.0837100.0
MobileNetV3 [4] Baseline KD 41.52 0.0207 / 100.0 2.083 /100.0
small DHP KD 41.46 0.0192/92.75 1.078/51.76
LW-DNA 4135 0.0178 /85.99 1.799 / 86.36
Baseline 5179 0.02717100.0 335971000
MnasNet [ 1] Baseline KD 48.17 0.0271/100.0 3.359/100.0
DHP KD 48.10 0.0264 /97.42 2.512/74.79
LW-DNA 46.85 0.0250/92.25 1.258 /37.45
RegNet [11] Baseline 21.94 0.2259 /100.0 2.831/100.0
Y 200MF Baseline KD 19.87 0.2259 / 100.0 2.831/100.0
LW-DNA 19.87 0.2095 / 92.74 1.524/53.85
RegNet [ 1] Baseline 21.65 0.4585 7 100.0 3.9477100.0
Y A0OMF Baseline KD 18.71 0.4585 / 100.0 3.947/100.0
LW-DNA 18.65 0.4468 /97.45 2.466 / 62.48
RegNet [11] Baseline 23.62 0.22557100.0 2.3537100.0
X00ME Baseline KD 21.38 0.2255 / 100.0 2.353/100.0
CIFAR100 LW-DNA 21.19 0.2075 /92.02 1.239/52.68
RegNet [11] Baseline 2175 0.4698 7 100.0 Z.8107100.0
X 400ME Baseline KD 19.06 0.4698 / 100.0 4.810/100.0
LW-DNA 18.81 0.4610/98.13 4.404/91.56
Baseline 20,74 0.41617100.0 7.1367100.0
EfficientNet [15] Baseline KD 19.73 0.4161/100.0 4.136 /100.0
LW-DNA 19.54 0.3850/92.53 2.121/51.28
Baseline 26.00 0.2901 7 100.0 1.1007 100.0
DenseNet40 [0] Baseline KD 22.84 0.2901/100.0 1.100/ 100.0
LW-DNA 22.46 0.2638 /90.93 1.016/92.35
Baseline 5.50 0.2901 / 100.0 1.059 / 100.0
DenseNet40 [6] Baseline KD 4.88 0.2901 / 100.0 1.059 / 100.0
LW-DNA 4.87 0.2632/90.73 0.963 /90.87
CIFARIO Baseline 574 0.12747100.0 0.856/100.0
ResNet56 [3] Baseline KD 573 0.1274 /100.0 0.856 / 100.0
LW-DNA 5.49 0.1262 /99.06 0.536 / 62.62

Table 1: Image classification results. Baseline and Baseline KD denote the original network trained without and with knowl-
edge distillation respectively. DHP-KD is the DHP version trained with knowledge distillation.

channel-wise mean and standard deviation of the the train-
ing set [3, 6]. Standard data augmentation is also applied.
Both of the baseline and the LW-DNA networks are trained

for 300 epochs with SGD optimizer and an initial learning
rate of 0.1. The learning rate is decayed by 10 after 50% and
75% of the epochs. The momentum of SGD is 0.9. Weight



decay factor is set to 0.0001. The batch size is 64.
2.2. Visual tracking

For visual tracking, we follow the training protocol
in [1]. To compare the baseline network and the LW-
DNA models, the backbone network is initialized with the
weights of ResNet50 and LW-DNA trained for this paper,
respectively. Then the same training and testing protocol
is applied. The results are denoted by DiMP-Baseline and
DiMP-LW-DNA respectively.

2.3. Image restoration

Super-resolution

DIV2K dataset is used to train image super-resolution
networks. The dataset contains 800 training images, 100
validation images, and 100 test images. The full resolution
images are cropped into 480 x 480 subimages with overlap
240. There are 32208 subimages in total. For EDSR, the
size of the extracted low-resolution input patch is 48 x 48
while for SRResNet the size is 24 x 24. The batch size is
16. Adam optimizer is used for the training. Default hyper-
parameters are used for Adam optimizer. The weight decay
factor is 0.0001. The networks are trained for 300 epochs.
The learning rate starts from 0.0001 and decays by 10 after
200 epochs.

A simplified version of EDSR is used in order to speed
up the training of EDSR. The original EDSR network con-
tains 32 residual blocks and each convolutional layer has
256 channels. The simplified version has 8 residual blocks
and with 128 channels for each convolutional layers.

Denoising

For image denoising, the images in DIV2K dataset are
converted to gray images. For DnCNN the patch size of
the input image is 64 x 64 and the batch size is 64. For
UNet, the patch size and the batch size are 128 x 128 and 16,
respectively. Gaussian noise is added to degrade the input
patches on the fly with noise level o = 70. Adam optimizer
is used to train the network. The weight decay factor is
0.0001. The networks are trained for 60 epochs and each
epoch contains 10,000 iterations. So in total, the training
continues for 600k iterations. The learning rate starts with
0.0001 and decays by 10 at Epoch 40.

3. Demo code of hypernetworks

Listing 1: Demo code of the utilized hypernetworks.

import torch

z_0o = torch.randn(n)

z_i = torch.randn(c)

w_l = torch.randn(n, c, m)

w_2 = torch.randn(n, c¢, wxh, m)

o = torch.matmul(z_o.unsqueeze(-1),

z_i.unsqueeze (0))

0o = o.unsqueeze(—-1) = w_1
o = torch.matmul(w_2, o.unsqueeze(—1))

For a better understanding, the demo code of the utilized
hypernetworks is shown in the code Listing 1. The main
part of code only contains 3 lines.

4. More Experimental Results

Full list of image classification results

Due to the lack of space, only a part of the results on im-
age classification is shown in the main paper. The full list
of image classification results is shown in Table 1. Fig. 1
shows more results on the training and testing log of dif-
ferent models. Fig. 2 shows the percentage of remaining
channels of more LW-DNA models.

Denoising

Image denoising results are shown in Table 2. The iden-
tified LW-DNA models perform no worse than the baseline
network with reduced number of parameters and FLOPs.

Ablation study on Tiny-ImageNet

An ablation study of the hyper-parameters p and 7 is
shown in Table 3. The experiments are conducted for Mo-
bileNetV1 on Tiny-ImageNet. The FLOPs budget is fixed
for the experiments. Two conclusions can be drawn from
the result. 1. By increasing the hyper-parameters p and 7,
the model complexity is also increased. And the accuracy
of the network is also improved. II. All of the results in Ta-
ble 3 are better than Baseline KD in Table 1, which shows
the robustness of p and 7. Based on the experience on Tiny-
ImageNet, we set p = 0.4 and 7 = 0.45 for ImageNet
experiments. Quite surprising, this combination works well
across the three investigated networks (ResNet50, RegNet,
and MobileNetV3).

Distribution of latent vectors

The distribution of the latent vectors in MobileNetV2
during the DHP proximal gradient optimization is shown
in Fig. 3. The distribution of the latent vectors at the end
the optimization is related to the initial distribution to some
extent. This phenomenon inspires us to pruning the latent
vectors at initialization.
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Table 3: Ablation study of the hyper-parameters p and 7 on MobileNetV1.
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Figure 1: Training and testing log of the LW-DNA models and the baseline models.
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Figure 3: The distribution of the latent vectors in MobileNetV2 during the proximal gradient optimization of DHP.



