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A. Derivation of Equation (14) in the Paper

The important metric in our method is:
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we cons1der the compression units in channel pruning U
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us ) For the remaining compression units of channel prunmg (i.e., input channels), the first item in Eq. 2 can be rewritten
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For the remaining compression units of tensor decomposition (i.e., singular values), the first item in Eq. 2 can be rewritten

as:
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where Wlo’(t) = </)(U(l;(t)ilo’(t)Vol’(t) ) is the SVD of ¢~ 1(W W (t)) The second item of Eq.2 can also be rewritten as:
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Therefore, for the tensor decomposition, the second item in the importance metric Eq. 1 is:
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B. Algorithm A

We provide the heuristic compression algorithm in Algorithm. A.

Algorithm A Heuristic compression algorithm

Input: A single layer W', average gradient of weight G, target compression rate R',, calculation interval T".

Output: The compressed layer Wl.

1: Initialize the set of compression unit index ¢!, whose corresponding unit number is ¢! + 7.

2: Initialize W° = W!, current compression rate R! = 0, current step ¢ = 1, removed input channels set Z/{ép = 0.
3: while true do

4:  for each compression unit index o in /() do

s R =Y ygde 1l
ieU\o
6 endfor .
7: W =W’ .
8: ul,(t+1) _ ul,(t)-
9:  for T least important compression units index o in 4>®) do
0. WY = o o).
1: UL = YL+ \ o,
12: Compute R! via Eq. 10 in this material.
13: if o belongs to channel pruning then
14: Add o to U.,,.
15: end if
16: if B! >= R! then
17: return W,
18: end if
19: if 'MCCL’" >= R! then
20: W =Wt
21: for each compression unit index o in Z/{ép do
22: W = f(Wl,o).
23: end for
24: return W
25: end if
26:  end for
27 t=t+1.

28: end while

Lines 19-25 in the above algorithm are based on the following analysis. According to the definition of the compression
rate:
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if we remove a less number of singular values (¢o is smaller but not equal to zero), the SVD-decomposition will increase
the number of parameters, which perhaps leads to extra channel pruning (¢; is larger) to achieve target compression rate. In
contrast, if we only consider channel pruning (i.e., to = 0), t; will be smaller than the above situation, which keeps more
information to achieve the target compression rate. Therefore, during the compression process, if the weight only compressed
by removing input channels has reached the target compression rate (i.e., % larger than the target compression rate), we will
only adopt the channel pruning to compress it.
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Figure A: Visualization of the compression process.

C. Visualization of the Compression Process

During the compression process, the approximated weight W' is used to compute the importance metric. After finishing

the compression, we transform the approximated weight A to compressed weight W' to the initial weight for the compressed
network and then fine-tune the network. This process is demonstrated in the following figure.

D. More Comparison with State-of-the-Art Methods

We compare our method with other methods based on single compression operations for VGG-16 and ResNet-50. As
shown in the following Tab. A, compared to GDP [4], our method achieves better performance (69.73% vs. 67.51%) with
higher FLOPs reduction (77.5% vs. 75.5%). Meanwhile, compared to [4, 6, 7, 1, 2, 3, 5], we also achieve better performance
for ResNet-50, which is shown in the following Fig. B.

Model Method FLOPs (PR) #Param. (PR) Top-1 Acc% Top-5 Acc%
Baseline 15.48B 138M 71.59 90.38
ThiNet[6] 9.58B(38.1%) 131M(5.1%) 69.80 89.53
VGG-16 CC(Cy =0.5) 7.56B(52.4%) 131M(5.1%) 72.05 90.61
GDP[4] 7.5B(54.5%) - 69.88 89.16
GDP[4] 3.8B(75.5%) - 67.51 87.95
CC(C: =0.75) 3.48B(77.5%) 127M(8.0%) 69.73 89.39

Table A: Comparison with single compression operations-based methods for VGG-16 on ImageNet2012.

We evaluate the generalization ability of our method on PASCAL VOC object detection task. We compress Faster-RCNN
with ResNet-50 backbone on Pascal VOC and only obtain 0.85 mAP drop with 50% compression rate, which demonstrates
that our method has a strong generalization ability for the detection task.
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Figure B: Comparison with single compression operations-based methods for ResNet-50 on ImageNet2012.
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