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Methods MegaFace
Veri. Id.

ResNet50 Baseline 62.15 58.42
Cluster (#sample>1) 45.57 44.23

UIR [5] 64.36 65.16
N-pair [3] 63.86 59.75
VirClass 70.72 67.22
VirFace 75.40 72.25

Table 1. Face identification and verification results on MegaFace
Challenge1 using FaceScrub as the probe set. “Veri.” refers to face
verification TAR at 1e-6 FAR, and “Id.” refers to face identification
rank1 accuracy with 1M distractors. Our methods are shown in
bold, and the best results are shown in red.

1. Additional Experiment Results

In this section, we present evaluation results on
MegaFace [1] and ablation study results on IJB-B [4] and
IJB-C [2]. In these test datasets, we present both face veri-
fication TAR rate and face identification rank1 accuracy.

1.1. Evaluation Results

Table 1 shows the MegaFace results of our proposed
method and the conventional semi-supervised methods. The
face identification and verification results show that our pro-
posed method can significantly improve the performance
and outperform the conventional semi-supervised methods.

1.2. VirClass

Influence of Shallow Rate and Identity Number. As
introduced in the paper Section 4.3.1, the scale of the unla-
beled training dataset is fixed to 80,068, and evaluate dif-
ferent combinations of shallow rate and identity number.
Table 2 shows the verification and identification results on
IJB-B and IJB-C. From the results, we find that the perfor-
mance has little change for different combinations which

*Equal contribution.

Methods IJB-B IJB-C
Veri. Id. Veri. Id.

ResNet50 Baseline 57.84 72.14 61.06 71.80
shallow rate = 1

80,068 ids 60.73 74.32 64.60 74.36

shallow rate = 2
40,034 ids 61.38 74.39 65.21 74.43

shallow rate = 5
16,014 ids 61.57 73.97 64.40 74.02

Table 2. Result of different combination of shallow rate and iden-
tity number when fixing the scale of the unlabeled training set.
“Veri.” refers to face verification rate at 1e-4 FAR, and “Id.” refers
to face identification rank1 accuracy.

Methods IJB-B IJB-C
Veri. Id. Veri. Id.

ResNet50 Baseline 57.84 72.14 61.06 71.80
80,068 samples
shallow rate = 1 60.73 74.32 64.60 74.36

160,136 samples
shallow rate = 2 62.03 75.37 65.46 75.31

400,222 samples
shallow rate = 5 62.37 75.93 66.26 76.25

Table 3. Results of different scales of the unlabeled training set.
“Veri.” refers to face verification rate at 1e-4 FAR, and “Id.” refers
to face identification rank1 accuracy.

can demonstrate the completion in Section 4.3.1 of the pa-
per.

Influence of the Scale of the Unlabeled Training Set.
In this part, the identity number is fixed to 80,068 in order to
guarantee the diversity. The influence of different the scale
of the unlabeled training set is evaluated in IJB-B and IJB-
C. The results are shown in Table 3. The IJB-B and IJB-C
results support the conclusion in the paper Section 4.3.1 that
the scale of the unlabeled training set is the most important
factor on the improvement of VirClass.



Methods IJB-B IJB-C
Veri. Id. Veri. Id.

VirClass Baseline 60.73 74.32 64.60 74.36
VirFace

(Sampling number = 2) 63.56 75.36 67.03 75.49

VirFace
(Sampling number = 5) 64.34 76.23 67.67 76.31

VirFace
(Sampling number = 10) 63.60 75.86 66.92 75.70

VirFace
(Sampling number = 20) 63.54 75.13 66.81 75.30

Table 4. Results of different sampling number on distribution gen-
erator. “Veri.” refers to face verification rate at 1e-4 FAR, and “Id.”
refers to face identification rank1 accuracy.

Methods IJB-B IJB-C
Veri. Id. Veri. Id.

VirClass Baseline 60.73 74.32 64.60 74.36
VirClass + DataAug

(Generation number = 5) 60.84 73.67 65.55 73.42

VirFace
(Sampling number = 5) 64.34 76.23 67.67 76.31

Table 5. Comparison with data augmentation method. “Veri.”
refers to face verification rate at 1e-4 FAR, and “Id.” refers to face
identification rank1 accuracy.

1.3. VirInstance

Sampling Number of Distribution Generator. We
study the effect of different sampling number of distribution
generator on the 1-shallow rate VirClass model. Table. 4 is
an addition to Table 6 in the paper. The performance gets
better as the sampling number increases. When sampling
number is 5, our VirFace method achieves the best perfor-
mance. The overall performance drops a little and tends to
be stable when sampling number exceeds 5.

Comparison with Data Augmentation. In this part,
we compare distribution generator of VirInstance method
with traditional data augmentation method on IJB-B and
IJB-C datasets as an addition of Table 8 in the paper. The
data augmentation generates different instances of images.
We implement the random combination of blur and color jit-
ters as data augmentation. We generate 5 instances for both
methods. The results are shown in Table. 5. Our method
outperforms on both IJB-B and IJB-C.

Analysis of VirInstance on the Feature Space. In
this part, we generate instances through our proposed dis-
tribution generator on both the labeled and the unlabeled
datasets. We define the classification accuracy as the rate
that the generated features can be correctly classified to the
identity which the original feature belongs to. Figure 1(a)
shows the classification accuracy on both the labeled dataset
denoting as labeled and the unlabeled dataset denoting as
unlabeled. From this figure, the unlabeled accuracy main-

Figure 1. Classification accuracy and cosine distance on the la-
beled and unlabeled data.

tains at a high level which means the generated features do
not introduce many noises. The labeled accuracy starts from
a low level which is about 75%, and quickly increases to
above 95% at epoch 8. This indicates that the generated
features prefer to be hard samples which can bring enough
variance, and as training progresses, these hard sample in-
formation can be learned.

We also calculate the cosine distance between the gen-
erated features and their corresponding centroids. For the
labeled features, their centroids are the weights of the last
FC layer, while for the unlabeled features, the centroids are
the original unlabeled feature as described in VirClass sec-
tion in Methods. Figure 1(b) presents the results on both
the labeled and unlabeled data. From this figure, the cosine
distance increases as the training progresses both on the la-
beled and on the unlabeled data. This means our proposed
VirInstance method can compact the intra-class distance.

2. Details of the VAE Network
We use a VAE network to predict the feature distribution

and generate virtual instances. The detailed architecture is
shown below.

The sampling layer is implemented through the equation
below:

z = α+ eβ/2 ∗ γ (1)

where α and β is the output of the encoder, γ is a random
matrix following the normal distribution.

We use the encoder to predict the feature distribution
which is presented by the output of the encoder denoting



Input Input Feature, 512-D

Encoder FC layer, ReLU, 256-D
FC layer, 128-D FC layer, 128-D

Sampling layer

Decoder FC layer, ReLU, 256-D
FC layer, 512-D

Output Output Feature, 512-D
Table 6. Architecture of distribution generator.

as α and β. Then, the sampling layer randomly samples
virtual instances from the feature distribution and the de-
coder reconstructs the sampled virtual instances to 512-D
features. In the loss function, we use the common KL di-
vergence loss in training:

LKL =
1

2

d∑
i=1

(α2 + eβ − β + 1) (2)

where α and β are the outputs of the encoder which repre-
sent the distribution.
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