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1. Introduction

In this supplementary material, we provide additional
information including mathematical notations, mathemati-
cal derivation of our loss, network architectures, and im-
plementation details. To investigate the effectiveness of
our method, we also conduct some additional experimen-
tal analysis.

2. Notations and Definitions.

In this section, we summarize the mathematical nota-
tions used throughout the manuscript in Table 1 for a clear
reference. The bi-view dataset X̄ consists of three parts,
i.e., X̄1,2, X̄1, and X̄2, where X̄1,2, X̄1, and X̄2 denote the
examples presented in all views, the first view only, and the
second view only, respectively. n and m denote the number
of the data points of the whole dataset X̄ and X̄1,2, respec-
tively. More specifically, Fig. 1 visually illustrates our set-
ting and some notations by taking a dataset as a showcase.

Missing

Missing

n

View 1 View 2

m

Figure 1. Illustrations of the incomplete bi-view dataset X̄.
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Notation Definition

X̄
Incomplete bi-view dataset where
X̄ = {X̄1,2, X̄1, X̄2}.

X̄1,2 Set of examples presented in both views.
X̄v Set of examples only presented in view v.

Xv The v-th view of complete samples X̄1,2, i.e.,
X̄1,2 = {X1,X2}.

Zv The representations of Xv .
n Number of examples presented in X̄.
m Number of examples presented in X̄1,2.
α Trade-off parameter of information entropy.
λ1 Trade-off parameter of dual prediction loss.
λ2 Trade-off parameter of reconstruction loss
f (v) Encoder of v-th view.
g(v) Decoder of v-th view.

G(i) Predictor which recovers missing representa-
tion Zj from complete one Zi.

Table 1. Mathematical notations in the manuscript.

3. Theoretical Derivation on Our Loss
In this section, we elaborate on the derivations of our loss

that are omitted in the manuscript due to the space limita-
tion.

3.1. Cross-view Contrastive Loss

We have imported the information entropy to the stan-
dard definitions of mutual information in the manuscript.
Mathematically, the contrastive loss is defined as,
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As illustrated in the manuscript, the representations of
t-th sample Z1

t ∈ RD and Z2
t ∈ RD can be interpreted

as the distribution of discrete random variables z and z′

over D classes, respectively. In other words, the probabil-
ity distributions P(z = d) is the d-th element of Z1

t where



1 ≤ d ≤ D. Hence, considering the case of a data set or
batch, the joint probability distribution P(z, z′) of variable
z and z′ could be defined by P ∈ RD×D, i.e.,
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Thus, for discrete distributions, the mutual information
and information entropy are given as below:
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where Pd and P′d denote the marginal probability distribu-
tions P(z = d) and P(z′ = d′) which could be obtained
by summing over the d-th row and d′-th column of P, re-
spectively. By substituting Eq. (3), Eq. (4), and Eq. (5) into
Eq. (1), we could obtain the final form of our cross-view
contrastive loss as below:
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3.2. Cross-view Dual Prediction Loss

To infer the missing views Zi from Zj , we pro-
pose to minimize the conditional entropy H(Zi|Zj) =
−EPZi,Zj

[logP(Zi|Zj)]. As it is intractable to solve

such a problem, we introduce a variational distribu-
tion Q(Zi|Zj) and further maximize the lower bound
of EPZi,Zj

[logP(Zi|Zj)], i.e., EPZi,Zj

[
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.

To be specific, we assume Q as a Gaussian distribution
N
(
Zi | G(j)

(
Zj
)
, σI

)
, where G(j)(·) is the predictor

which maps Zj to Zi and σI is a variance matrix. As a
result, we have
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which could be equivalent to the following optimization
problem:
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By ignoring the constant log 1√

2πσI
and scaling factor

2σI, we could obtain the prediction loss as below,
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Hence, for a given bi-view dataset, the dual prediction
loss is accordingly defined as
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4. Experiment Details
In this section, we elaborate on the implementation de-

tails of our method and the experimental settings.

4.1. Network Architectures of COMPLETER

The proposed method contains two training modules,
i.e., view-specific auto-encoders and cross-view prediction
networks. Table 2 and 3 have presented the details of the
network architectures in these two training modules, respec-
tively. For these two modules, we simply adopt a dense
(i.e., fully-connected) network where each layer is followed
by a batch normalization layer and a ReLU layer. The soft-
max activation function is used at the last layer of the en-
coders and prediction modules. The structures of autoen-
coders f (·), g(·), and predictors G(·) for different views are
the same. Specifically, the size of the output of the encoder
and predictor should be the same and set to 64 or 128 ac-
cording to the dataset.

4.2. Implementation Details for Clustering

To perform clustering, we adopt k-means to compute the
cluster assignments on the common representation which is



Table 2. The architecture of the autoencoders in COMPLETER.
Dataset Encoder Decoder

Caltech101-20

Dense (BatchNorm1d, ReLU, size = 1024) Dense (BatchNorm1d, ReLU, size = 1024)
Dense (BatchNorm1d, ReLU, size = 1024) Dense (BatchNorm1d, ReLU, size = 1024)
Dense (BatchNorm1d, ReLU, size = 1024) Dense (BatchNorm1d, ReLU, size = 1024)
Dense (Softmax, size = 128) Dense (BatchNorm1d, ReLU, size = input)

LandUse-21

Dense (BatchNorm1d, ReLU, size = 1024) Dense (BatchNorm1d, ReLU, size = 1024)
Dense (BatchNorm1d, ReLU, size = 1024) Dense (BatchNorm1d, ReLU, size = 1024)
Dense (BatchNorm1d, ReLU, size = 1024) Dense (BatchNorm1d, ReLU, size = 1024)
Dense (Softmax, size = 64) Dense (BatchNorm1d, ReLU, size = input)

Scene-15

Dense (BatchNorm1d, ReLU, size = 1024) Dense (BatchNorm1d, ReLU, size = 1024)
Dense (BatchNorm1d, ReLU, size = 1024) Dense (BatchNorm1d, ReLU, size = 1024)
Dense (BatchNorm1d, ReLU, size = 1024) Dense (BatchNorm1d, ReLU, size = 1024)
Dense (Softmax, size = 128) Dense (BatchNorm1d, ReLU, size = input)

Noisy MNIST

Dense (BatchNorm1d, ReLU, size = 1024) Dense (BatchNorm1d, ReLU, size = 1024)
Dense (BatchNorm1d, ReLU, size = 1024) Dense (BatchNorm1d, ReLU, size = 1024)
Dense (BatchNorm1d, ReLU, size = 1024) Dense (BatchNorm1d, ReLU, size = 1024)
Dense (Softmax, size = 64) Dense (BatchNorm1d, ReLU, size = input)

Table 3. The architecture of dual prediction in COMPLETER.
Structure

Dense (BatchNorm1d, ReLU, size = 128)
Dense (BatchNorm1d, ReLU, size = 256)
Dense (BatchNorm1d, ReLU, size = 128)
Dense (BatchNorm1d, ReLU, size = 256)
Dense (BatchNorm1d, ReLU, size = 128)

Dense (Softmax, size = input)

obtained by simply concatenating all view-specific repre-
sentations together. Specifically, we use the k-means con-
tained in the Scikit-Learn package [3] with the default con-
figuration. For a fair comparison, we run all the used meth-
ods five times with different initializations and data parti-
tions to obtain the common representations. For each run,
we further conduct k-means 10 times on the representa-
tion to obtain the clustering results. In all experiments, we
adopt three evaluation metrics implemented by Scikit-Learn
to evaluate the clustering performance, namely, ACC, NMI,
and ARI.

5. Additional Experiments
This section presents two experimental studies includ-

ing: i) the influence of dimensionality of latent representa-
tions and ii) clustering performance on the full datasets.

5.1. Influence of Dimensionality

In the proposed method, we treat each element of the rep-
resentation as an over-cluster class probability like [1, 2, 4].
To evaluate the effectiveness of such over-clustering strat-
egy, we change the dimensionality of the representation in

Table 4. Influence of dimensionality.
Dataset Dimension ACC NMI ARI

Caltech101-20

32 43.48 60.31 41.50
64 51.99 62.88 47.91

128 68.44 67.39 75.44
256 69.56 65.63 74.54

Scene-15

32 37.30 40.79 21.41
64 37.60 41.01 20.55

128 39.50 42.35 23.51
256 36.37 41.87 22.10

the range of {32, 64, 128, 256}. The missing rate η is fixed
to 0.5 and the results are shown in Table 4. The results
demonstrate that a too large or too small dimensionality will
cause performance degradation. The former is of insuffi-
cient representability and the latter may have some redun-
dant information.

5.2. Experiment on the Full Datasets

In the main body of the manuscript, we only report the
results on the 20k subsets of the Noisy MNIST dataset be-
cause most of the baselines are inefficient to handle large
scale datasets. In this evaluation, we carry out cluster-
ing experiments on the whole Noisy MNIST dataset and
report the results compared with scalable methods includ-
ing DCCA [5], DCCAE [5], BMVC [7], and AE2Nets [6].
Similarly, we also test these methods in both Incomplete
(η = 0.5) and Complete (η = 0) settings. As shown in
Table 5, COMPLETER still outperforms all baselines.



Table 5. Performance comparisons on full Noisy MNIST.

Missing Type Method ACC NMI ARI

Incomplete

DCCA 45.32 48.73 25.70
DCCAE 49.44 48.49 25.31
AE2Nets 37.76 35.53 20.57
BMVC 46.42 36.23 22.34
COMPLETER 94.28 87.39 88.12

Complete

DCCA 89.29 91.35 87.04
DCCAE 89.03 91.40 87.77
AE2Nets 50.70 53.26 40.49
BMVC 91.57 83.55 83.83
COMPLETER 97.17 94.19 93.58
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