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In the supplementary materials, we first give the details
of the pilot experiments described in the article. The we
show more exploration results about the generic percep-
tual loss. We first use a toy example to show that random
network has the ability to capture the structure information
from a global view compared with the pixel-wise Ly loss.
Then we show the impact of the down-sampling operators.

S1. Details of the Pilot Experiment

Most of previous works attribute the success of percep-
tual loss to the CNN filters pretrained with a large amount
of samples. They assume that training for image classifi-
cation may allow the network to capture high-level features
which are coincident to human perception. Although He et
al. [9] showed that perceptual loss with the random weight
network can work well in solving optimizing problem in
the style transfer, it is still interesting to find out if the ran-
dom weights can work well as a perceptual regularization
in training CNNs.

In this pilot experiment, we simply follow the settings
in [14], and conduct experiments on a typical image syn-
thesis task, i.e., image super-resolution (SR). We use the
popular SRResNet [16] as an SR network. Assume that the
input low quality image is I;, a fully convolutional network
can transfer [; to the estimated high-resolution image I,
and we try to minimize the difference between I, and the
real image I}, with per-pixel and perceptual losses following
Eq. I.

, 1
07 0,y) = A 6;@) — ;W3 D
Giua09) = G 102(0) — 930 13

The per-pixel loss is defined as Kpmel(fh,fh) = ||fh -
14)|3/C/H/W . We assign the perceptual loss network with
random weights or pretrained weights for comparison. The
super-resolution results are shown in Figure 1 of the main
article. We can see that adding the perceptual loss with
pretrained and randomized networks can both combat the
blurry results in utilizing the per-pixel loss alone.

These observations suggest that the network structure,

instead of the pretrained weights, contributed to the success
of the perceptual loss. Through convolution operations in
multiple layers, the CNN itself has captured the hierarchi-
cal dependencies of variable statistics. By comparing the
difference on the perceptual features, a perceptual loss term
can be computed to investigate structured dependencies of
the inputs. This motivates us to apply the perceptual loss
to more structured output learning tasks, in which applying
such randomzied perceptual loss is non-trivial.

S2. More Explorations
S2.1. Toy Examples

We conduct a toy example to show that the multi layer
CNNs have the ability of modeling the structure outputs
than a pixel-level Ly loss. First of all we generate two dif-
ferent backgrounds with the shape of 512 x 512 using Gaus-
sian noise. The mean is set to 0 and the standard deviation
is set to 1. Then, 10000 points with zero values are sampled
within the range of a circle with » = 40 at the middle of
Figure 1a. The exactly same 10000 points are pasted to Fig-
ure 1b. Finally, we divided Figure la into 16 x 16 patches,
and then random shuffle the patch to generate Figure Ic.
Thus, we have a similar pattern of the circle in Figure 1a
and Figure 1b.

We evaluate the difference between these images under
the pixel-level Lo loss and the genetic perceptual loss ini-
tialized with random weights. We run this toy examples for
50 times. In all cases, under evaluation of the pixel-level Lo
loss, Figure 1a and Figure 1c are closer than Figure 1a and
Figure 1b, which is contradicted to the perceptual recogni-
tion. However, under the evaluation of the perceptual loss,
37 out of 50 trails successfully recognize the similar pattern
in Figure la and Figure 1b. This indicates that the multi
layer CNNs have a stronger ability of modeling the struc-
ture outputs than a pixel-level L.

S2.2. Effect of Down-sampling Operators

We also explore the ability of down-sampling operators
in each block of the perceptual network. Three different
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(a) Low level noise with a Circle

(b) High level noise with a Circle

(c) Patch Shuffle of (a)

Figure 1 — The figure (a) and (b) are generated by the Gaussian noise. We then generated a circle and paste it to the middle of the figure (a) and (b). We
finally shuffled the patch of the figure (a), and get (¢). Under the evaluation of the pixel-level L2, (a) and (c) are closer than (a) and (b), but under the
evaluation of the genetic perceptual loss with a random weight network, (a) and (b) are closer.

ways are usually employed in the network design: max
pooling, average pooling and convolutions with stride of 2.
The VGG19 is employed as the basic perceptual network,
and we change the down-sampling operators in each block.
Following Hamed et al [?], the mapping ability of the ran-
dom network is evaluated with the classification accuracy
on a simple dataset. We fix all the weights except for the
final linear classification layer of the random network, and
train the final linear layer for 30 epochs on Cifar10. The
classification accuracy can reflect the mapping ability of the
random network. ‘Mapping’ means to transfer the input into
a linearly separable space. In Figure 2, we show the correla-
tion between the segmentation mloU trained with different
perceptual networks, and the mapping abilities. Note that
the segmentation network is PSPNet with ResNet18 as the
backbone, and the baseline without perceptual loss can only
achieve 69.6% of mIoU. From Figure 2, we can see the clas-
sification accuracy on Cifarl0 with fixed random network is
higher than the chance rate 10%, which means the random
network has the ability of mapping the input into a linearly
separable space. Besides, with a max pooling layer, the ran-
dom perceptual loss can achieve the highest performance.
Meanwhile, with a max pooling layer, the mapping ability
is also higher than other operators. The reason may because
with the fix pattern of finding the max value in local region,
the saliency of the structure output is easier to be encoded
in the embedding space.
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