
Diffusion Probabilistic Models for 3D Point Cloud Generation
Supplementary Material

Shitong Luo, Wei Hu
Wangxuan Institute of Computer Technology

Peking University
{luost, forhuwei}@pku.edu.cn

1. Detailed Derivations
We present the detailed derivations of the training objective in Eq. (9).

Eqdata

[
log pθ(X(0))

]
=

∫
qdata(X

(0))

[
log

∫
pθ(X(0:T), z) dX(1:T) d z

]
dX(0)

≥ log

∫
qdata(X

(0))pθ(X(0:T), z) dX(1:T) d z dX(0) (Jensen’s inequality)

≥
∫
qdata(X

(0))q(X(1:T), z|X(0)) log
pθ(X(0:T), z)

q(X(1:T), z|X(0))
dX(1:T) d z dX(0) (ELBO)

Note thatX(1:T) and z are conditionally independent onX(0),

=

∫
qdata(X

(0))q(X(1:T)|X(0))qϕ(z|X(0))
[

log p(X(T)) + log p(z)

+

T∑
t=1

log pθ(X(t−1)|X(t), z)− log qϕ(z|X(0))

−
T∑
t

log q(X(t)|X(t−1))
]

dX(0:T) d z

=

∫
qdata(X

(0))q(X(1:T)|X(0))qϕ(z|X(0))
[

log p(X(T)) + log p(z)

+

T∑
t=1

log
pθ(X(t−1)|X(t), z)

q(X(t)|X(t−1))
− log qϕ(z|X(0))

]
dX(0:T) d z

1

Since q(X(t)|X(t−1)) is intractable, we rewrite it using Bayes’ rule,

=

∫
qdata(X

(0))q(X(1:T)|X(0))qϕ(z|X(0))
[

log p(X(T)) + log p(z)

+

T∑
t=2

log
pθ(X(t−1)|X(t), z)

q(X(t−1)|X(t),X(0))
· q(X

(t−1)|X(0))

X(t)|X(0)

+ log
p(X(0)|X(1), z)

q(X(1)|X(0))
− log qϕ(z|X(0))

]
dX(0:T) d z

=

∫
qdata(X

(0))q(X(1:T)|X(0))qϕ(z|X(0))
[

log
p(X(T))

q(X(T)|X(0))

+

T∑
t=2

log
pθ(X(t−1)|X(t), z)

q(X(t−1)|X(t),X(0))
+ log pθ(X(0)|X(1), z)

+ log p(z)− log qϕ(z|X(0))
]

dX(0:T) d z

=

∫
qϕ(X(0:T), z)

[
log

p(X(T))

q(X(T)|X(0))
+

T∑
t=2

log
pθ(X(t−1)|X(t), z)

q(X(t−1)|X(t),X(0))

+ log pθ(X(0)|X(1), z) + log
p(z)

qϕ(z|X(0))

]
dX(0:T) d z

On the right hand side, all the terms except log pθ(X(0)|X(1), z) can be rewritten into the form of the KL divergence. We
show how to do it on one of the terms. For other terms, it is similar.∫

qϕ(X(0:T), z) log
pθ(X(t−1)|X(t), z)

q(X(t−1)|X(t),X(0))
dX(0:T) d z

=

∫
qϕ(X(0),X(t−1),X(t), z) log

pθ(X(t−1)|X(t), z)

q(X(t−1)|X(t),X(0))
dX(0,t−1,t) d z

=

∫
q(X(t−1)|X(0),X(t))qϕ(X(0),X(t), z) log

pθ(X(t−1)|X(t), z)

q(X(t−1)|X(t),X(0))
dX(0,t−1,t) d z

= −
∫
qϕ(X(0),X(t), z)DKL

(
q(X(t−1)|X(t),X(0))

∥∥∥pθ(X(t−1)|X(t), z)
)

dX(0,t) d z

= −EX(0),X(t),z∼qϕ

[
DKL

(
q(X(t−1)|X(t),X(0))

∥∥∥pθ(X(t−1)|X(t), z)
)]
.

Next, notice that log p(X(T))
q(X(T)|X(0))

has no trainable parameters, so we can ignore it in the training objective. Finally, by
negating the variational bound and decomposing the distributions, we obtain the training objective in Eq. (9) as follows:

L(θ,ϕ) = Eq
[T∑
t=2

N∑
i=1

DKL

(
q(x

(t−1)
i |x(t)

i ,x
(0)
i)‖pθ(x

(t−1)
i |x(t)

i , z)
)︸ ︷︷ ︸

L
(t−1)
i

−
N∑
i=1

log pθ(x
(0)
i |x

(1)
i , z)︸ ︷︷ ︸

L
(0)
i

+DKL

(
qϕ(z|X(0))‖p(z)

)︸ ︷︷ ︸
Lz

]
.

2. Simplified Training Algorithm
The original training and sampling algorithm is formulated according to the generator’s training objective in Eq. (15),.

2

Algorithm 1 Training
1: repeat
2: SampleX(0) ∼ qdata(X(0))
3: Sample z ∼ qϕ(z|X(0))
4: for t = 1 . . . T do
5: SampleX(t) ∼ q(X(t)|X(t−1))
6: end for
7: Compute ∇LG(θ,ϕ,α) using samples X(0:T) and z; Then

perform gradient descent.
8: until converged

Algorithm 2 Sampling

1: Samplew ∼ N (0, I)
2: z ← Fα(w)

3: X(T) ← {x(T)
i } ∼ N (0, I)

4: for t = T . . . 1 do
5: SampleX(t−1) ∼ pθ(X(t−1)|X(t),z)
6: end for
7: returnX(0)

[5] proposed a simplified training algorithm. We also adapt the simplified algorithm for our model. Before formulating the
simplified algorithm, we should further analyse L(t−1)

i . Since both q(x(t−1)
i |x(t)

i ,x
(0)
i) and pθ(x

(t−1)
i |x(t)

i , z) are Gaussians
(Eq. (10), Eq. (4)), the term L

(t−1)
i can be expanded as:

L
(t−1)
i = E

x
(0)
i x

(t)
i z

[
1

2βt

∥∥∥∥√ᾱt−1βt
1− ᾱt

x
(0)
i +

√
αt (1− ᾱt−1)

1− ᾱt
x

(t)
i − µθ(x

(t)
i , t,z)

∥∥∥∥2
]

+ C.

Evaluating L(t−1)
i requires sampling x(t)

i from q(x(t)|x(0)). In principle, it can be done by sampling iteratively through the
Markov chain. However, [5] showed q(x(t)|x(0)) is a Gaussian, thus allowing us to sample x(t) efficiently without iterative
sampling:

q(x(t)|x(0)) = N (x(t)|
√
ᾱtx

(0), (1− ᾱt)I). (14)

Using the Gaussian above, we can parameterize x(t)
i as x(t)

i (x
(0)
i , ε) =

√
ᾱtx

(0)
i +

√
1− ᾱtε, where ε ∼ N (0, I):

L
(t−1)
i = E

x
(0)
i ,ε,z

[
1

2βt

∥∥∥∥ 1
√
αt

(
x

(t)
i −

βt√
1− ᾱt

ε

)
− µθ(x

(t)
i , t,z)

∥∥∥∥2
]

+ C. (14)

The above equation reveals that µθ(x
(t)
i , t) must predict 1√

αt

(
x

(t)
i −

βt√
1−ᾱt

ε
)

given x(t)
i . Thus, µθ(x

(t)
i , t) can be param-

eterized as:

µθ(x
(t)
i , t) =

1
√
αt

(
x

(t)
i −

βt√
1− ᾱt

εθ(x
(t)
i , t,z)

)
, (14)

where εθ(x
(t)
i , t,z) is a function approximator (i.e., neural network) intended to predict ε from x

(t)
i . Finally, L(t−1)

i can be
simplified as

L
(t−1)
i = E

x
(0)
i ,ε,z

[
β2
t

2βtαt(1− ᾱt)

∥∥∥ε− εθ(
√
ᾱtx

(0)
i +

√
1− ᾱtε, t,z)

∥∥∥2
]

+ C. (14)

To minimize L(t−1)
i , we can only minimize E

[
‖ε− εθ‖2

]
because the coefficient β2

t

2βtαt(1−ᾱt)
is constant.

The simplified algorithm proposed in [5] suggests choosing a random term from {
∑N
i=1 L

(t−1)
i }Tt=1 to optimize at each

training step. In addition to that, the prior loss term Lz in our objective function should also be considered. Since only one
term in {

∑N
i=1 L

(t−1)
i }Tt=1 is optimized at each step, we re-weight Lz with 1

T . The adapted simplified training algorithm is
as follows:

Algorithm 3 Training (Simplified)
1: repeat
2: SampleX(0) ∼ qdata(X(0))
3: Sample z ∼ qϕ(z|X(0))
4: Sample t ∼ Uniform({1, . . . , T})
5: Sample ε ∼ N (0, I)

6: Compute∇
[∑N

i=1 ‖ε− εθ(
√
ᾱtx

(0)
i +

√
1− ᾱtε, t, z)‖2 + 1

T
DKL

[
qϕ(z|X(0))‖p(z)

]
; Then perform gradient descent.

7: until converged

3

Note that the KL divergence in Lz is evaluated stochastically by:

DKL

[
qϕ(z|X(0))‖p(z)

]
= −Ez∼qϕ(z|X(0))

[
p(z)

]
−H

[
qϕ(z|X(0))

]
. (14)

3. Implementation Details
PointNet Encoder The architecture of our encoder follows that of PC-GAN, PointFlow and ShapeGF [8, 1, 9, 2]. Specif-
ically, we feed point clouds into a 3-128-256-512 MLP with the ReLU nonlinearity followed by a max-pooling to obtain
a global 512-dimension feature. Then, the feature is fed into a 512-256-128-256 MLP with the ReLU nonlinearity and we
obtain the latent code of 256-dimension.

Prior Flow We stack 14 affine coupling layers to construct the prior flow. The dimension of hidden states is 256, identical
to the dimension of latent codes. Following each of the layers, we apply moving batch normalization [6, 4]. Both the scaling
and translation networks F (·) and G(·) are 128-256-256-128 MLPs with the ReLU nonlinearity.

Diffusion Process The number of steps T in the diffusion process is 200. We set the variance schedules to be β1 = 0.0001
and βT = 0.05, and βt’s (1 < t < T) are linearly interpolated.

Intuitively speaking, the reverse diffusion process is analogous to MCMC (Langevin dynamics) sampling procedures
where βt is the step size of the (T − t + 1)-th step (Eq. 4). Since we normalize point clouds to unit variance and the
coordinates of points roughly range from -2 to 2, we set the initial step size βT to 0.05, slightly larger than 2−(−2)

T = 4
200 ,

in order to ensure that the points can walk through possible regions of different shapes in early steps. To make the points
concentrate in desired regions, βT , . . . , β1 should be decaying and the last “step size” β1 should be sufficiently small, so we
set β1 to 0.0001.

Reverse Diffusion Kernel The reverse diffusion kernel in Eq. (6) is paramtereized by εθ(x
(t)
i , t,z), as derived in Ap-

pendix 2. We implement it using a variant of MLP, which consists of a series of concatsquash layers [4] defined as:

h`+1 = CS(h`, t,z) = (W1h
` + b1)� σ(W2c+ b2) +W3c, (14)

where h` is the input to the layer and h`+1 is the output. The input to the first layer is the 3D positions of points x(t)
i .

c = [t, sin(t), cos(t), z] is the context vector, and σ denotes the sigmoid function. W1, W2, W3, b1 and b2 are all trainable
parameters. The dimension of the concatsquash-MLP used in our model is 3-128-256-512-256-128-3, and we use the
LeakyReLU nonlinearity between the layers.

Dataset Split We split the ShapeNet [3] into training, testing and validation sets by the ratio 80%, 15%, 5% respectively.
We don’t use the dataset split in recent works because as reported in [7], their split is somewhat unbalanced (e.g., the training
and validation sets of the airplane category mostly contain passenger airplanes while the test sets contains mostly fighter jets
and spaceships.), and those works actually use the validation set rather than testing set to test models.

Open Source The code of this project is available at https://github.com/luost26/diffusion-point-
cloud.

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations and generative models for 3d

point clouds. In International conference on machine learning, pages 40–49. PMLR, 2018. 4
[2] Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun Hao, Serge Belongie, Noah Snavely, and Bharath Hariharan. Learning

gradient fields for shape generation. arXiv preprint arXiv:2008.06520, 2020. 4
[3] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva,

Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-Rich 3D Model Repository. Technical Report
arXiv:1512.03012 [cs.GR], Stanford University — Princeton University — Toyota Technological Institute at Chicago, 2015. 4

[4] Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord: Free-form continuous dynamics for
scalable reversible generative models. arXiv preprint arXiv:1810.01367, 2018. 4

[5] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. arXiv preprint arXiv:2006.11239, 2020. 3

4

https://github.com/luost26/diffusion-point-cloud
https://github.com/luost26/diffusion-point-cloud

[6] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In
International Conference on Machine Learning, pages 448–456, 2015. 4

[7] Roman Klokov, Edmond Boyer, and Jakob Verbeek. Discrete point flow networks for efficient point cloud generation. arXiv preprint
arXiv:2007.10170, 2020. 4

[8] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d classification and segmenta-
tion. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 652–660, 2017. 4

[9] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan. Pointflow: 3d point cloud generation
with continuous normalizing flows. In Proceedings of the IEEE International Conference on Computer Vision, pages 4541–4550,
2019. 4

5

