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1. Overview

The supplementary materials in the following sections
provide further implementation details, experimental de-
tails, quantitative evaluation, and qualitative results. Im-
plementation details will be discussed in Section 2. Ex-
periment details will be presented in Section 3. Additional
quantitative results are in Section 4. Finally, qualitative re-
sults will be in Section 5, along with discussions on typical
failure cases.

2. Implementation Details
2.1. Alpha («) Values Explained

In our formal setup, o values are the percentages of light
that is transmitted through the semi-transparent mirror. Un-
der this formulation, it can be viewed as the transparency
of the optical see-through device. We denote a second con-
stant, 3 € [0, 1], which is the influence the device generated
image has on the final perceptual image. For the OTS set-
ting, we assume the amount of light that get reflected from
the semi-transparent mirror is 1 — «, so the upper bound is
B =1 — «. Figure 1 diagrams our basic modeling assump-
tion.

In this model, when @ = 0, the problem falls back to
video-see-through setting, as /3 tends to 1. Higher « values
increases the problem’s challenge since the amount of light
that can be controlled becomes more limited. A more com-
plete, and more complex, model would be the Bidirectional
reflectance distribution function [14]. There are other op-
tical models that may be more physically realistic that we
do not explore in this work. We defer their study to future
works.

“Denotes equal contribution.
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Figure 1: Our simplified optics model in the optical see-
through setting.

2.2. Parameterization of Our Method

In our work, we parameterize our method using 6; and
05 as followed:

Fe(x»y):91y+927 (1)
O¢(z,y) = max(min(Fy(z,y) — ax,3),0) + ax.

This can be viewed as trying to re-create an affine trans-
formed version of the proposal image. Intuitively, there may
be proposal images that we cannot make by purely adding
light; however, we may have some hope of creating a trans-
formed version of it due to lightness constancy [1].

We can further simplify this formulation to be a function
of a single parameter, namely:

0 =1- (Oéxmaz - ¢)

0 = aTymae — 0,

(@)

where T4, is the maximum pixel value of the input image
and ¢ is the single parameter. The parameter is suggestively
grouped together with the term, ,,,4,. Indeed, this new pa-
rameterization has an intuitive grounding: it can be thought
of as scaling our proposal image’s dynamic range to be be-
tween the input image’s maximum brightness a4, and
1, but allowing the lower bound to bleed into the input im-
age’s dynamic range by an offset ¢ amount. If ¢ = 0, we



are guaranteed our proposal image has pixel values that are
greater than the input, which is desirable for non-negative
image generation. However, by having the offset, ¢, we al-
low the method to learn a proposal image that may not be
entirely physically feasible, but increases its dynamic range.
This trade-off allows for less over-exposed images.

An additional benefit is we reduce the number of param-
eters down to a single parameter per-image. This is desir-
able both for efficiency of training and explainability. In
Figure 5 from the main paper, our x-axis plots loss as a func-
tion of offset ¢ variation. A natural extension is to consider
the group that we are doing this transformation onto. Three
that we propose are: over the entire image, over each chan-
nel, and over clusters of brightness and locality, and we re-
port some of these results on the Map— Satellite dataset in
Table 1. Note that we do not claim the superiority of one
grouping strategy over another; we suggest that practition-
ers select the one that works best for their task.

2.3. A Clarification on Notations

In our work, we formally define two parts to our loss
function, L.onse and Lgim,

Lim(a,b) = [[N(a) = N(b)[|? )
Leonst(r,a,b) =~ Z | max(min(r; ;,b),a) — 75|, (4)
4,7

where N is a normalization function, v > 0 is a hyper-
parameter controls the trade-off between perceptual sim-
ilarity and fulfilling the residual constraint. In the paper
we sometimes refer to Leonst as Loyt as this term can be
viewed as a soft constraint loss on the residual.

Furthermore, in our problem definitions, we overload
the subscript notation and occasionally refer to F'(a); ; as
F(ai ;). This occurs in Equation 1 and Equation 3 of the
main paper, and we will fix it for the final version.

Offset Group FID (|) KID ({, x10%) LPIPS ({)
Channel 139.14 14.11 0.3751
Global 126.24 12.93 0.3562
Clustering 125.75 12.76 0.3588

Table 1: Metrics for different offset groupings reported on
the Map—Satellite dataset. We do not observe a method
that clearly trumps the rest.

3. Experimental Setup
3.1. Baseline Details

The first baseline we consider, From Scratch model (Fig-
ure 2c¢), is derived from the idea that the GAN discrimina-
tor loss can capture perceptual and semantic accuracy. We

used the WGAN-GP [6] model to generate a residual pattern
and discriminate on the optically combined output between
the input and our residual. We found this to be finicky to
train, even with all the bells and whistles, and tend to get
trapped in sub-optimal minimas of either outputting noth-
ing or a maxed-out residual. This is due in part to the fact
that it does not have a way to elegantly handle images that
do not have a non-negative residual. Visually, the From
Scratch model produces blurry residuals that generally have
the color scheme correct, but nothing else (Figure 5).

The second baseline, Heuristic method (Figure 2b), fol-
lows the intuition that we can simply clip the difference be-
tween the desired output and our input to be physically re-
alizable. This was indeed a strong baseline for images that
have a brightly lit output and a relatively dimmer input, but
suffers from severe ghosting artifacts when the inverse is
true.

The last baseline we compare to, Finetuning model (Fig-
ure 2a), was inspired by the observation that the difference
between the desired output image and the input image in
the heuristic method is approximately what we want. This
model thus attempts to fine-tune this difference into a resid-
ual that obeys the non-negativity constraint. Specifically,
we train a neural network to use a pre-trained, state-of-the-
art image generation network and fine-tune it such that the
residual, the computed difference between the output and
the input, is physically realizable. An additional loss en-
sures the network does not veer off from the original out-
put. However, we experience that the finetuned model leads
to severe overexposure as it gets trapped in the local optima
of outputting a maxed-out residual. Tuning the parameters
to optimality only leads to visually “fuzzy” outputs that de-
teriorate the pre-trained model’s performance (Figure 5).

3.2. Implementation Details

For our method, we explored different parameterization,
including pure affine transformations with two parameters
and single offset parameter for the entire image. We also
explored grouping the offset by channel or by clustering on
brightness and locality. For the optimization process, we
used batch operations on batch-size of 128, and was able
to compute the final results efficiently. We optimized each
image to convergence, taking 5000 steps for each image;
however, we observe that convergence usually occurs much
quicker, usually by a one-thousand steps. The optimizer we
used was Adam [12] with the default parameters and learn-
ing rate of 1 x 10~3. During training, we also applied drop-
out during optimization on both the constraint 1oss Lo, st
and the reconstruction loss Lg;,,,, which we found to help
slightly speed up training. The reader is strongly advised to
look at the code demo that is provided with this document.
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Figure 2: Illustration of the three baselines we compare to.

3.3. Additional Metrics

Following prior works [5, 3, 10], we report two addi-
tional metrics: SSIM [18] and LPIPS [19]. SSIM measures
structual similarity by comparing local patterns of pixel in-
tensities that have been normalized for luminance and con-
trast. LPIPS uses deep features instead, and computes per-
ceptual similarity by comparing the features of a VGG net-
work. In order to simulate human visual white balancing,
figures reported are normalized to be between a fixed range.
To show that this carries on to real world situations, we de-
signed a User Study with Amazon Mechanical Turk. Re-
sults are reported in Section 4.

3.4. Ablations

In Table 3 in the main paper, we do an ablation study
on the Map—Satellite dataset to go over normalization,
loss function importance, and our method’s transformation

group.

We first study the effect of the normalization module that
we use,

N(z) = M7 5)

Tmaz — Tmin

where x,,, and x,,4, are the smallest and largest pixel val-
ues in image z, respectively. Specifically, we wish to verify
the claim that using the loss improves visual quality. But
removing the normalization module of our method, we ob-
serve a decrease in performance, with all metrics perform-
ing worse. Visually, the output contains ghosting artifacts
due to its attempt to minimize the vanilla Ly distance.

We also study the effect of each part of the loss function
on performance, L.onst and Lg;p,. Training only on L,
yields a slightly better result as the construction of Lg;,
penalizes out-of-bound pixels of the target image. Training
on only L.,p,st performs poorly, as the metric we really care



about is the visual quality. The target contain very few out-
of-bound pixels, but looks “overexposed” and has very little
dynamic contrast. However, using both losses yields the
best visual qualities, as shown in the table.

Finally, we explored results on producing images in an
unconstrained fashion in row 4 of Table 3 in the main pa-
per. For this method, we do affine transformations at a per-
pixel level, allowing the image to optimize with the most
parameters. Specifically, the number of parameters is equal
to the size of the image. Surprisingly, this does worse than
producing images under a constrained, fewer parameter set-
ting. This is due to the fact that, by not adding constraints
the original structure of the image is lost. The numbers re-
flect this, as all metrics except for PSNR are worse; we note
that PSNR has a tendency to measure high pixel correlation
as being better.

3.5. Other Applications

In this section, we will provide implementation details
for how we extended our model to other applications, and
precisely how we generate Figure 7 of the main paper. For
Figure 7 of the paper, we extended our results to four appli-
cations. Following are the application, their corresponding
papers, and the link to the implementation we used:

1. High resolution image-to-image translation [2]. We
use the official implementation of this paper to gen-
erate input and proposal target image: https://
github.com/saic-mdal /HiDT. We use o =
0.5 and optimize two parameters per channel.

2. Multi-modality image-to-image translation MU-
NIT [8]. We wuse the newest released of
MNUIT (https://github . com/NVlabs /
imaginaire / tree / master / projects /
munit) and the AFHQ dataset in StarGAN [4]. For
this task we use a = 0.5 and optimizing two global
parameters.

3. Style transfer, style to photo, and sketch to photo. We
use the results form Adaln [7] for these three tasks. We
use Adaln’s offical released (https://github.
com/xunhuangl995/AdaIN-style) to create
pairs of input and target image for our optimization
procedure. For both style transfer and sketch to photo
tasks, we use v = 0.7 and optimize two parameters per
channels. As for style to photo task, we use o = 0.5.

4. Face attribute editing. For this paper, we use Interface-
GAN [16]’s official release (https://github.
com/genforce/interfacegan). We use the
code to generate faces using ProgressiveGAN [11].
Then we select a pair of faces, one smiled while the
other didn’t, as the proposal and target for our opti-

mization procedure. For this application we use o =
0.7 and optimizing two parameters per channel.

The baseline we shown are the Heuristic baseline. Both
the baseline output and the output of our model went
through basic white-balancing and contrast enhancement
before showing in paper to better model perceptual com-
parison of human eyes.

4. Quantitative

We provide additional quantitative results to further
compare our model with baselines. Specifically, we com-
pare with baselines using different metrics (Section 4.1),
using a variety of datasets (Section 4.2), and using differ-
ent o value (Section 4.3). We also conduct a user study
using Amazon Mechanical Turks in Section 4.4.

4.1. Additional comparison to baselines

In this section, we compute two additional metrics,
SSIM [18] and LIPIS [19], on results reported in Table 1
of the main paper. Both baselines, model outputs, and the
datasets are kept the same. The results are shown in Ta-
ble 2. We can see that our model out-performs all baselines
in LIPIS, and out-performs almost all baselines in SSIM.

4.2. Comparison in a variety of datasets

We extend the additional quantitative evaluation to
datasets in CycleGAN [20], which are partially reported in
Table 2 of the main paper. We present results for all datasets
where pretrained model was provided by the CycleGAN
codebase with SSIM and LIPIS in Table 3. The results show
that our model is able to outperform the strongest baselines
(i.e. Heuristic) in most tasks.

4.3. Different o’s

In this section, we extending the quantitative evaluation
of Figure 8 in our paper. Precisely, we extended the evalua-
tion using two more metrics: SSIM and LIPIS. We also pre-
sented the results for three more datasets from Pix2Pix [9]:
Satellite—Map, Night—Day, and Day—Night. The results
are shown in Figure 4. In most metrics and datasets, our
method out-performs the baseline in almost all « values.
The performance of our model is very close to that of the
baseline when « is very low or when « is very high, since
both models works well in former cases and both models
breaks in later cases. This is reasonable because when «
is small, the generation task is almost the same as the un-
constrained problem. When « is to large, since too much
environment light has let through, there might not be fea-
sible solution even after taking human perceptual quirks
into consideration. Our model out-performs the baseline
more when generating photo-realistic images, as indicated
in Map—Satellite dataset comparing to the other direction.
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Satellite — Map [9]

Map — Satellite [9]

Day — Night [13]

Method SSIM(1, x102) LIPIS({) SSIM(1, x10?) LIPIS(}) SSIM(1, x103) LIPIS({)
Heuristic 33.82 0.563 35.21 0.486 56.42 0.363
From scratch 32.67 0.662 13.55 0.761 38.31 0.615
Finetuning 42.56 0.584 17.99 0.695 40.20 0.626
Ours 37.86 0.534 49.58 0.359 61.38 0.343
Table 2: Comparison with baselines using SSIM [17] and LIPIS [19] in three datasets.
Domain SSIM (1, x 102) LIPIS (|, x 102) e 'Ln;::; fooksthe mest photo ealisic?
Input Target Ours Heuristic Ours  Heuristic
Horse Zebra 13.70 13.31 75.16 75.32
Zebra Horse 17.95 16.59 74.26 74.40
Summer  Winter 16.38 16.06 76.09 76.15
Winter Summer 18.06 16.61 74.82 75.01 Which image is the most detailed?
Monet Photo 20.20 18.30 78.60 79.19 =2
Monet 18.00 18.41 75.95 76.19
Phot VonGogh 11.09 10.84 74.40 74.47
% Cezamne 1699 1589 6992  69.68
Uyeoko  17.09 18.01 75.55 75.98

Table 3: Comparison with heuristic baseline on a variety of
datasets from CycleGAN [20].

The performance gap is larger when the source domain is
brighter than the target domain (e.g. Day—Night).

4.4. User Study Details

While a variety of metrics have confirmed the efficacy of
our proposed method, these metrics were designed to only
approximate what a real user’s preference is. In order to get
a more accurate assessment of whether users would prefer
the output of our method to the baselines, we conducted a
user study using Amazon Mechanical Turks. Specifically,
we random sampled 50 images from the Map— Satellite
dataset and gathered outputs from our method as well as
three baselines (From scratch, Finetune, and Heuristic). For
each selected input image, we will presented the four out-
put images generated by four methods in random order in a
row, and asked the workers four questions:

1. Which image looks most like a satellite image?
2. Which image looks the most photo-realistic?
3. Which image is the most detailed?

4. Which image looks most like a satellite map?

Which image looks most like a satellite image?

Image A Image B Image C
L

Which image looks most like a satellite map?
Image B C

Figure 3: Examples of images for AMT workers. The work-
ers will be presented with these four questions and asked to
answer them. The last two questions were designed as a
sanity check for whether the worker paid attention.

Please refer to Figure 3 for an example of images and ques-
tions presented to the workers.

To verify whether a user’s response is consistent, we
check whether they provide the same answer for the first
and the last question. These two questions are very simi-
lar but with different order of the images. We expect a user
who paid attention to the task would provide the same an-
swer to those two question. We throw away all responses
whose answer for the first and the last question aren’t con-
sistent and compute user preference using the rest data. We



receive 196 responses in total for 50 images, and rejected
73 of them (i.e. 62.76% of consistent data).

5. Qualitative

In this section, we will present additional qualitative re-
sults, comparing the proposed method with baselines on a
variety of datasets and tasks. A detailed comparison be-
tween our methods and all three baselines are presented in
three Pix2Pix datasets [9] in Figure 5 (Map<—Satellite and
Day—Night). We ignored the Night—Day direction since
such direction is usually easy unless « is so high that the
task becomes infeasible. For unaligned datasets in Cycle-
GAN [20], we show results from Zebra<>Horses in Fig-
ure 6, Winter<>Summer in Figure 8, and photo stylization
in Figure 7. We used pretrained model available in ht tps:
//github.com/ junyanz/pytorch-CycleGAN—
and-pix2pix to generate our proposal images for those
tasks. Interestingly, we found the performance is usually
bottlenecked by the quality of the pretrained model in these
unaligned tasks. To alleviate such issue and show that our
model is capabe of combining with existing state-of-the-
arts, we show additional results using most recent meth-
ods in Figure 9. One can see that our method can leverage
stronger image proposal model to reach better performance.
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250 { — Baseline /.——o/' 0.25{ — Baseline Vs 071 — Baseline —° 1207 e — Baseline 1018 —— Baseline
—— Ours —— Ours » 0.64 —— Ours ./. 2 . —— Ours - —— Ours
° 0.20 / / 100+ o\ 0.8
200 - p 0.5 o .
/ 0.44 o/ 807 \o 5
0.15 o . . 0.6
150 ] / o,
0.3 o 604
o 0.10 021 P /./ \ 0.4
y, X
100 / / ./. 404 \.\o\.\ \
/ s 0.05 ¢ 011 LA *—e 02
_ ./ P e e \.\: .
—o—eo—0 —o—o—* 0.04¥ 204
02 04 06 08 02 04 06 08 02 04 06 08 02 04 06 08 02 04 06 08
) 74
3001 Baseline 3/0’. 0.254 —— Baseline 3/' 0 —— Baseline /o/ ° 60 —— Baseline . —— Baseline
—— Ours Y —— Ours 0.64 —— Ours ./. —— Ours 0.8 —— Ours
250 0.20 50
/o P 0.54 /o
200 / Y 0.6
0.15 g 0.4 7 40
/ /i :
150 p 0.3
0.10 7 304 0.4
” 0.2 e.
. N
100 N o
. 0.05 / / J o. N
— 0.11 & 20 —et—o—o—, 02 ~e
02 04 06 08 02 04 06 08 02 04 06 08 02 04 06 08 02 04 06 08
N 100
1751 — Baseline o s 0071 — Baseline : 05| — Baseline o '\ —— Baseline N —— Baseline
—— Ours / —— Ours : —— Ours —— Ours 09 . —— Ours
150 o 0.064 74 . AN
044 801 °
0.05 " s 0.8 N\
125 / \. '\.
0.04 0.3 N 0.7 I
60| ) ..
100 g N N \.
0.03 02 ./ o\ 0.6 *
75 e
/ Va 0.02 o1 40 . 05 e
” ) .
50 e 0.014 7 \'\\\k N
-
L 0.0 20 d 0.4
02 04 06 08 02 04 06 08 02 04 06 08 02 04 06 08 02 04 06 08
140
—— Baseline 2 0.06{ — Baseline 0.5] — Baseline 504 % —— Baseline 1o 3235 —— Baseline
1201 — ours / — oOurs — Ours / — oOurs XN, —— Ours
0.05 £ 0.9 2
100 / . 0.4+ 74 701 e
/ 0.041 ] 604 08 \.
80 . 0.3 \
0.034 °
60 ./ / 504 N 0.7 s
0.024 0.2 o
40 ,/ 404
pZ 014 /0 0.6
5/' 0.014 - o
20 ~ . ) 304 '
o o« 0.00{ o—o—%' 004 ‘e 0.5

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

Figure 4: Metric plots over alphas. Left to right: FID, KID, LPIPS, PSNR, SSIM. Top to bottom: map—satellite,
satellite—map, day—night, night—day. Our model out-performs the strongest baseline (i.e. Heuristic) across a wide range
of different « value. Note that for small «, both our method and the baseline works well; while for large «, both our method
and the baseline breaks done. Our method out-performs the baseline more when asking to generate photo-realistic image (i.e.
map—satellite), and when the source domain is brighter than the target one (i.e. day—night).
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Figure 5: Visual comparison of our method on the Map<Satellite and Day—Night dataset [9].



Figure 6: We compare our results on the Zebra<+Horse dataset [20]. Our method is better able to remove the white stripes on
the zebras, which is difficult with a non-negative constraint. Top to bottom: input, proposal, heuristic baseline, our method.
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Figure 7: Visualizations of our method on Monet—Photo task [20]. Compared to naively clipping, we do not lose most of
the details in our method.
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Winter— Summer Summer— Winter

Figure 8: Visualisations on the Summer<>Winter dataset [20], along with the non-negative residual image. Our method is
able to match the proposal image by generating a residual that harmoniously combines into the desired image. Top to bottom:
input, proposal, our method, its residual.
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Day — Night [2]  Night — Day [2]

Figure 9: Additional results in different applications. From top to bottom: input, proposal, heuristic baseline, our method.
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Proposal Output

Figure 10: Failure modes of our method. It cannot deal with
images with a large amount of contrast, and will look over
exposed and display ghosting artifacts (top). Our method
cannot recover if the image proposal is bad to begin with
(bottom).

6. Failure cases

Our method works very well due to being able to lever-
age lightness constancy in human visual systems. In addi-
tion, by being a framework flexible enough to encompass
existing image-to-image translation models.

However, the former necessarily requires that our
method decrease the dynamic range in its outputs. In Fig-
ure 10, we see in the first row a night image proposal, and
the corresponding output from our model. Because there are
no limits on the image proposal, our method may encounter
images with very large dynamic ranges. In such cases, we
see that the output is riddled with ghosting artifacts, as well
as looking very over-exposed in an attempt to compensate
for the dark regions, but the bright portions in the proposal
image prevents it from being able to naively over-saturate it.
Similarly, our method has no hope to generate good images
when the inputs are drastically brighter than the proposal
image.

Furthermore, our framework must leverage image pro-
posals. If there is no easily accessible aligned photo, then
our method must rely on another image-to-image synthesis
model. Thus, it cannot perform better than the synthesis
model’s proposals. In the second row in Figure 10, we are
attempting to run a style transfer task from the photo of a

13

plant to a Monet painting. However, the image proposal
network is unable to generate anything meaningful, and de-
spite the output of our method being close to the proposal
image, it is not what we desired. In general, such limitations
hold for our framework as image synthesis is not a solved
problem.
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