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Abstract

This supplementary material involves the details the are
omitted in the main paper due to space limitation. 1)
Section A: a detailed introduction of causal inference and
structural causal model. 2) Section B: experimental settings
and another case study.

A. Causal Inference

In statistics, the phrase “correlation does not imply cau-
sation” [1] indicates the causal relationships between two
variables may not solely rely on an observed association
or correlation between them. Machine learning models
are driven by training data and the conventional likelihood-
based methods tend to learn high correlations from training
set rather than causalities. Causal inference [5, 6] is able to
mitigate the above spurious correlations and estimate the
true causality, i.e., the effect of treatment variable on an
outcome variable, by introducing the operation of interven-
tion. The two predominant causal inference frameworks are
structural causal model (SCM) [6] and potential outcomes
[6] which are fundamentally connected. We adopt SCM in
our video grounding task as it is able to explicitly model
the relationships among variables to obtain the direct causal
effect, so that the unexpected high correlations between the
query and video from the dataset can be properly eliminated
by backdoor adjustment and do-calculus. We will dive into
the details of SCM in the following section.
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A.1. Structural Causal Model

Structural Causal Model (SCM), which is commonly ex-
pressed as a directed acyclic graph (DAG), describes rel-
evant variables of world and how they interact with each
other. The direction of edges in the DAG refers to the causal
relationship between the two connected nodes. An SCM
consists of a set of endogenous (V ) and a set of exogenous
(U ) variables, which are related by a set of functions (F )
that determine the values of variables based on the values
of their parents. The variables U can be considered as en-
vironment or noise that have minor affect on the value of
V from inexplicable causes. These variables U are often
not shown in the causal diagram. The set of endogenous
variables V models the fundamental relationships between
the important factors and the corresponding SCM is usually
constructed according to human knowledge. Even though
V are endogenous, some variables from V can still be un-
observed, because the SCM only defines variables’ causal
relationships but not the availability from data. As shown in
Figure 1 (a), the variable Z is the common cause of the vari-
able X and Y . We name such variable Z a confounder be-
cause not considering it prevents us from understanding the
causal relationship and results in spurious correlation be-
tween X and Y . Furthermore, a confounder is called unob-
served if its statistics is not available from the dataset. The
conventional machine learning models are good at learning
the correlations P (Y |X) from the training data, while the
confounder Z is overlooked, resulting in unaddressed spu-
rious correlations solely based on X and Y . An SCM facil-
itates us to build the relations among these variables and ex-
plicitly consider the impact ofZ. To estimate the true causal
effect fromX to Y , we can use the calculus of interventions
and compute the distribution P (Y |do(X)), which responds
to a new causal graph with incoming edges towards X (Z
→X) cut off, as shown in Figure 1 (b). Intuitively, an inter-
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Figure 1: Structural Causal Model (SCM). (a) an SCM. The
endogenous variables V consists of {X,Y, Z}. The vari-
able Y is the child of the variable X and thus Y is directly
caused by X . The variable Z is a confounder and both X
and Y are the children of it. (b) An intervention on variable
X is reflected in causal graph by cutting off the edge Z →
X .

vention is forcing the value of a variable, whereby relieves it
from the control of its ancestral variables and consequently
models the situation with no common cause between the
variables of interest.

A.2. Backdoor Adjustment

To compute P (Y |do(X)), the spurious correlation
caused by the confounder must be addressed. Backdoor ad-
justment is a technique that deconfounds the causal effect
estimation. Following the goal of intervention, it requires
an admissible set of variables that cut off every backdoor
path from X to Y , which is defined as an unblocked trail
from X to Y that contains an incoming edge towards X . A
formal version of such requirement is called backdoor cri-
terion [5]. As shown in 1 (a), Z is such admissible variable
and the backdoor adjustment corresponding to Z is:

P (Y |do(X)) =
∑
z

P (Y |do(X), z)P (z|do(X)) (1)

=
∑
z

P (Y |do(X), z)P (z) (2)

=
∑
z

P (Y |X, z)P (z) (3)

where P (z|do(X)) = P (z) since X is now independent
from Z due to intervention. The learning objective has
now changed from P (Y |X) to

∑
z P (Y |X, z)P (z). The

coufounding bias Z is now being explicitly marginalized
out. Unfortunately, the latent confounder Z has no concrete
form in video grounding. As we hypothesize them to be the
selection bias in generating the dataset, a reasonable surro-
gate based on the actions that describe the video sequences
is adopted.

B. Experiments
B.1. Settings

Table 1 shows the detailed hyper-parameters used in our
experiments for the three datasets. We follow the previous
studies Gao et al. [3], Yuan et al. [7], and Zhang et al. [8]

Hyper-Parameters Value

Batch size 16
Learning rate 0.0005
Decay rate 0.01
Gradient clipping 1
Optimizer Adam
Word embedding dimension 300
Char embedding dimension 50
Dropout 0.2
Kernel Size 7
Head 8
Hidden Dimension 128
Max Video Clips 128
α 0.1
β 0.01

Table 1: Hyper-Parameters for the three datasets.

to download or extract the pre-trained visual features and
split the training, validation and test data. The video feature
dimensions are 1024, 4096 and 500 for the Charades-STA,
TACoS, and ActivityNet Caption datasets, respectively. For
the Charades-STA, we follow the VLSNet [8] to extract vi-
sual features by the pre-trained rgb imagenet.pt, which is
provided by Joao et al. [2]. For the TACoS dataset, we use
the pre-trained video features provided by Gao et al. [3].
For the ActivityNet Caption, we download the captions and
pre-trained C3D visual features from its official websites
[4].

B.2. Metrics

We follow the previous works [3, 7, 8] to use the “R@n,
IoU = µ” and “mIoU” as the evaluation metrics. The met-
ric “mIoU” refers to the average IoU over all testing sam-
ples. For the metric “R@n, IoU = µ”, we follow the pre-
vious settings to configure n = 1 and µ = {0.3; 0.5; 0.7}
for the Charades-STA and ActivityNet Caption, and n = 1
and µ = {0.1, 0.3; 0.5; 0.7} for the TACoS. It should be
noted that we don’t fine-tune a feature extractor in our ex-
periments on the three datasets.

B.3. Case study

Figure 2 presents another case study to demonstrate the
capability of our proposed IVG-DCL in alleviating the spu-
rious correlations between text and video features. It shows
that the previous model VSLNet [8] tends to locate the
query #1 to the moment that relevant to the query #2, as
the activities relevant to the “someone sits on the chair” are
more commonly existed in the training set than the activ-
ities relevant to “someone stands on the chair”. Our pro-
posed IVG-DCL is able to find out more accurate moment
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Query #1: a person moves a chair into a room then 
stands on it to reach for something high up on a shelf. 
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Query #2: He then moves the chair and sit down on 
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Figure 2: A case study on the Charades-STA dataset to demonstrate the capability of our model in mitigating the spurious
correlations between textual and video features.

boundaries for both queries.
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