Supplementary Materials for
Trajectory Prediction with Latent Belief Energy-Based Model

1. Learning
1.1. Model Formulation

Recall that X = {z;,7 = 1,...,n} indicates the past
trajectories of all agents in the scene. Similarly, Y indicates
all future trajectories. Z represents the latent belief of agents.
P denotes the plans. We model the following generative
model,

Plan
py(Z, P Y|X) = pa(Z|X) ps(P|Z,X) p, (Y|P, X).
——— ———
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1.2. Maximum Likelihood Learning

Let ggata (P, Y| X )qdata (X) be the data distribution that
generates the (multi-agent) trajectory example, (P,Y, X),
in a single scene. The learning of parameters
of the generative model py(Z,P,Y|X) can be based
on mingDgr(qaata(P,Y|X) || py(P,Y|X)) where
Dicr(a(x) | p(x)) = Eqllogq(x)/p(x)] is the Kullback-
Leibler divergence between ¢ and p (or from ¢ to p
since Dgr(g(z) || p(x)) is asymmetric). If we ob-
serve training examples {(P;,Y;,X;),j = 1,..,N} ~
Gdata(P, Y| X)qdata(X), the above minimization can be ap-
proximated by maximizing the log-likelihood,

N N
> logpy(P;,Y,|X ;) = Zlog/z py(Z;,P;,Y ;X ;)
j=1 j=1 j

2)

which leads to the maximum likelihood estimate (MLE).
Then the gradient of the log-likelihood of a single scene can

be computed according to the following identity,

1
Vylogpy(P,Y|X)= ————V /p Z,PY|X
P w( | ) pw(P,YLX) P 2 w( | )
3
py(Z,P.Y|X)
= | —=————"Vylogpy(Z,P,Y|X ()
L pw(P,Y|X) P w( | )

:/ py(Z1X)py(P|Z, X)py (Y|P, X)
z Py (P X)py (Y|P, X)

®)
=E,,zip.x)Vylogpy(Z,P,Y|X). (6)

The above expectation involves the posterior py,(Z|P, X))
which is however intractable.

1.3. Variational Learning

Due to the intractiablity of the maximum likelihood learn-
ing, we derive a tractable variational objective. Define

Q¢(Z7P>Y|X) = Qdata(PvY|X>Q¢(Z‘P7X) (7

where g4(Z|P, X)) is a tractable variational distribution, par-
ticularly, a Gaussian with a diagnoal covariance matrix used
in this work. Then our variational objective is defined to be
the tractable KL divergence below,

Drr(44(Z, P,Y|X) || py(Z,P,Y|X)) ®)

where ¢,(Z, P,Y|X) involves either the data distribution
or the tractable variational distribution. Notice that,
Dk 1(q4(Z,P,Y|X) | py(Z,P.Y|X)) ©)
— Dict(aata(P.Y|X) | pu(P.Y[X))  (10)

+ Dkr(9y(Z|P,X) || py(Z|P, X)) (an
12)
which is an upper bound of

DKL(qdata(P7Y|X) H pw(P,YlX)) due to the
non-negativity of KL divergence, in particular,
Dk1(¢s(Z|P,X) || py(Z|P,X)), and equivalently
a lower bound of the log-likelihood.

We next unpack the generative model py(Z,P,Y | X)
and have,

Vylogpy(Z,PY|X)



Dxr(as(Z, P,Y|X) || py(Z,P,Y|X)) (13)
= Dxr(qdata(P,Y|X)qs(Z|P, X) || pa(Z|X)ps(P|Z,X)p, (Y|P, X))
(14)

_ 94(Z|P, X)

= B0 ) Bagerq (P.Y1X)ay (2P, X) l0g T ZIX) (15)
qdata(P|Y, X)

T Eggara X Bagasa (P Y1X)a4(21P.X) log Tps(PIZ,X) (16)
Gdata (Y]X) (17)

E E log —=2——~
* Bagara 00 Bagara (PY1X)0y21P.X) 108 5 55

Expressions 15, 16, 17 are the major objectives for learning
the LB-EBM, plan, and prediction modules respectively.
They are the "major" but not "only" ones since the whole
network is trained end-to-end and gradients from one module
can flow to the other. We next unpack each of the objectives
(where E,, . (x) is omitted for notational simplicity).
Expression 15 drives the learning of the LB-EBM.

Z|P, X
Eqgata(P.YIX)a4(2|P.X) 108 % (18)
=E lo 4 (Z|P, X)
T Mdata (PY X005 (ZIP X 08 (7 oxpl—Ca (2, X))/ Za (X)
(19)
= Drc1(4(ZIP, X) | po(2)) (20)
+Egy410(P.Y1X)a,(21P.X)Ca(Z, X) +log Za(X) 21

where Z.(X)= [, exp(—Ca(Z,X))po(Z)=E,,(z)(—Ca(Z.X)).

Let 7 (a) = Equoo () Eguara (P.Y1X)4s(21P.x) Ca(Z, X )+

Egyora(x) l0g Zo(X), which is the objective for LB-EBM
learning and follows the philosophy of IRL. And its gradient
is,

VaJ (@) (22)
= Egpora(X) Eguora P Y[X)05(21P.X)[VaCalZ,X)| (23)
- EQdata(X)Epa(Zl-X)[VQO(X(Z7X)] (24)

Thus, « is learned based on the distributional difference
between the expert beliefs and those sampled from the
current LB-EBM. The expectations over ¢gq:q(X) and
Qdata(P,Y|X) are approximated with a mini-batch from
the empirical data distribution. The expectation over
q4(Z|P, X) is approximated with samples from the varia-
tional distribution through the reparameterization trick. The
expectation over p,(Z|X) is approximated with samples
from Langevin dynamics guided by the current cost func-
tion.
Expression 16 drives the learning of the plan module.

(16) = —Egu0r0 () Equara (P.Y1X)qs (2 1P, x) log ps (P|Z, X)
(25)

— H(P|Y,X) (26)

where H(P|Y,X) is the conditional entropy of
Jdata(P|X,Y) and is a constant with respect to the
model parameters. Thus minimizing 16 is equivalent to
maximizing the log-likelihood of ps(P|Z, X).

Expression 17 drives the learning of the prediction mod-
ule.

(17) = —Eg o0 () Eguara (P.Y1X)q4(2|P.x) l0g Py (Y|P, X)
27)

— H(Y|X) (28)
where H(Y|X) is the conditional entropy of qgatq (Y |X)
and is constant with respect to the model parameters. We
can minimize Expression 27 for optimizing the prediction
module. In the learning, P is sampled from the data distribu-
tion ggatq (P, Y| X). In practice, we find sampling P from
the generative model pg(P|Z, X)) instead facilitates learning
of other modules, leading to improved performance. The
objective for learning the prediction module then becomes,

“Egara () Baaana v1) Eqy (21 Epy (P12,x) log 0y (Y|P, X)

(29)

where
Eq,z1x) (30)
:/quam(P|Y7X)q¢(Z|P,X) (31)
= Egpora(Ply . X)06(Z|P, X). (32)

2. Negative Log-Likelihood Evaluation

Although Best-of-K on ADE and FDE (e.g., K = 20)
is widely-adopted [ 1, 3, 4, 7], some researchers [2, 5, 6] re-
cently propose to use kernel density estimate-based negative
log likelihood (KDE NLL) to evaluate trajectory prediction
models. This metric computes the negative log-likelihood
of the groud-truth trajectory at each time step with kernel
density estimates and then averages over all time steps. We
compare the proposed LB-EBM to previous works with pub-
lished results on NLL. They are displayed in Table 1. Our
model performs better than S-GAN [1] and Trajectron [2]
but underperforms Trajectron++' [5]. It might be because
Trajectron++ use a bivariate Gaussian mixture to model the
output distribution, while our model employs a unimomal
Gaussian following most previous works. Our model can
also be extended to adopt Gaussian mixture as the output
distribution and we leave it for future work.

I Trajectron++ is a concurrent work to ours and was discovered in the
reviewing process.



H S-GAN | Trajectron | Trajectron++ ‘ Ours ‘

ETH 15.70 2.99 1.80 2.34
Hotel 8.10 2.26 -1.29 -1.16
Univ 2.88 1.05 -0.89 0.54
Zaral 1.36 1.86 -1.13 -0.17
Zara2 0.96 0.81 -2.19 -1.58
Average 5.80 1.79 -0.74 -0.01

Table 1. NLL Evaluation on ETH-UCY for the proposed LB-EBM
and baselines are shown. The lower the better.
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