

Temporal-Relational CrossTransformers for Few-Shot Action Recognition

Supplementary Material

Toby Perrett Alessandro Masullo Tilo Burghardt Majid Mirmehdi Dima Damen
 <first>.<last>@bristol.ac.uk Department of Computer Science, University of Bristol, UK

X-Shot results

In the main paper, we introduced Temporal-Relational CrossTransformers (TRX) for few-shot action recognition. They are designed specifically for K -shot problems where $K > 1$, as TRX is able to match sub-sequences from the query against sub-sequences from multiple support set videos.

Table 1 in the main paper shows results on the standard 5-way 5-shot benchmarks on Kinetics [3], Something-Something V2 (SSv2) [4], HMDB51 [5] and UCF101 [6]. For completeness we also provide 1-, 2-, 3-, 4- and 5-shot results for TRX with $\Omega=\{1\}$ (*i.e.* frame-to-frame comparisons) and $\Omega=\{2, 3\}$ (*i.e.* pair and triplet comparisons) on the large-scale datasets Kinetics and SSv2. These are in Table 1 in this supplementary, where we also list results from all other works which provide these scores.

For 1-shot, in Kinetics, TRX performs similarly to recent few-shot action-recognition methods [8, 1, 7], but these are all outperformed by OTAM [2]. OTAM works by finding a strict alignment between the query and single support set video per class. It does not scale as well as TRX when $K > 1$, shown by TRX performing better on the 5-shot benchmark. This is because TRX is able to match query sub-sequences against similar sub-sequences in the support set, and importantly ignore sub-sequences (or whole videos) which are not as useful. Compared to the strict alignment in OTAM [2], where the full video is considered in the alignment, TRX can exploit several sub-sequences from the same video, ignoring any distractors. Despite not being as well suited to 1-shot problems, on SSv2 TRX performs similarly to OTAM. 2-shot TRX even outperforms 5-shot OTAM. Table 1 again highlights the importance of tuples, shown in the main paper, where TRX with $\Omega=\{2, 3\}$ consistently outperforms $\Omega=\{1\}$.

Figure 5 in the main paper shows how TRX scales on SSv2 compared to CMN [8, 9], which also provides X-shot results ($1 \leq X \leq 5$). The equivalent graph for Kinetics is shown in Fig. 1 here. This confirms TRX scales better as the shot increases. There is less of a difference between TRX with $\Omega=\{1\}$ and $\Omega=\{2, 3\}$, as Kinetics requires less tem-

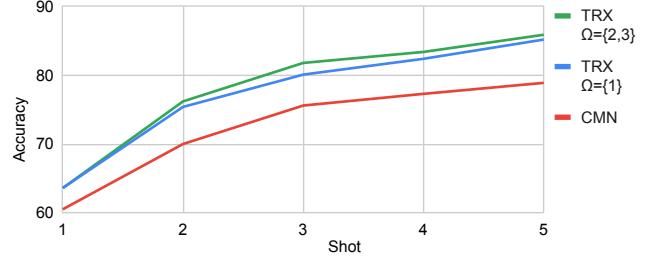


Figure 1: Comparing CMN [9] results to TRX for X-shot 5-way, for $1 \leq X \leq 5$ on Kinetics. TRX benefits from increasing the number of of videos in the support set, both for $\Omega=\{1\}$ and $\Omega=\{2, 3\}$.

poral knowledge to discriminate between the classes than SSv2 (ablated in Sec. 4.3.1 and 4.3.2 in the main paper).

The impact of positional encoding

TRX adds positional encodings to the individual frame representations before concatenating them into tuples. Table 2 shows that adding positional encodings improves SSv2 for both single frames and higher-order tuples (by +0.3% and +0.6% respectively). For Kinetics, performance stays the same as single frames and improves slightly with tuples (+0.4%) for the proposed model. Overall, positional encoding improves the results marginally for TRX.

References

- [1] Mina Bishay, Georgios Zoumpourlis, and Ioannis Patras. TARN: Temporal Attentive Relation Network for Few-Shot and Zero-Shot Action Recognition. In *British Machine Vision Conference*, 2019. 1, 2
- [2] Kaidi Cao, Jingwei Ji, Zhangjie Cao, Chien-Yi Chang, and Juan Carlos Niebles. Few-Shot Video Classification via Temporal Alignment. In *Computer Vision and Pattern Recognition*, 2020. 1, 2
- [3] Joao Carreira and Andrew Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. *Computer Vision and Pattern Recognition*, 2017. 1
- [4] Raghav Goyal, Vincent Michalski, Joanna Materzy, Susanne Westphal, Heuna Kim, Valentin Haenel, Peter Yianilos, Moritz Mueller-freitag, Florian Hoppe, Christian Thurau,

Dataset	Method	Shot				
		1	2	3	4	5
Kinetics	CMN [8]	60.5	-	-	-	78.9
	CMN-J [9]	60.5	70.0	75.6	77.3	78.9
	TARN [1]	64.8	-	-	-	78.5
	ARN [7]	63.7	-	-	-	82.4
	OTAM [2]	73.0	-	-	-	85.8
	Ours - TRX $\Omega=\{1\}$	63.6	75.4	80.1	82.4	85.2
	Ours - TRX $\Omega=\{2, 3\}$	63.6	76.2	81.8	83.4	85.9
SSv2*	CMN-J [9]	36.2	42.1	44.6	47.0	48.8
	Ours - TRX $\Omega=\{1\}$	34.9	43.4	47.6	50.9	53.3
	Ours - TRX $\Omega=\{2, 3\}$	36.0	46.0	51.9	54.9	59.1
SSv2 [†]	OTAM [2]	42.8	-	-	-	52.3
	Ours - TRX $\Omega=\{1\}$	38.8	49.7	54.4	58.0	60.6
	Ours - TRX $\Omega=\{2, 3\}$	42.0	53.1	57.6	61.1	64.6

Table 1: Comparison to few-shot video works on Kinetics (split from [9]) and Something-Something V2 (SSv2) ([†]: split from [9] *: split from [2]). Results are reported as the shot, *i.e.* number of support set videos per class, increases from 1 to 5. -: Results not available in published works.

Method	Positional Encoding	Kinetics	SSv2 [†]
$\Omega=\{1\}$	✗	85.2	53.0
$\Omega=\{1\}$	✓	85.2	53.3
$\Omega=\{2, 3\}$	✗	85.5	58.5
$\Omega=\{2, 3\}$	✓	85.9	59.1

Table 2: The importance of incorporating positional encoding for single frames and the proposed model $\Omega=\{2, 3\}$.

Ingo Bax, and Roland Memisevic. The ‘‘Something Something’’ Video Database for Learning and Evaluating Visual Common Sense. In *International Conference on Computer Vision*, 2017. 1

- [5] H Kuehne, T Serre, H Jhuang, E Garrote, T Poggio, and T Serre. HMDB: A large video database for human motion recognition. In *International Conference on Computer Vision*, nov 2011. 1
- [6] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild. *arXiv*, 2012. 1
- [7] Hongguang Zhang, Li Zhang, Xiaojuan Qi, Hongdong Li, Philip H S Torr, and Piotr Koniusz. Few-shot Action Recognition with Permutation-invariant Attention. In *European Conference on Computer Vision*, 2020. 1, 2
- [8] Linchao Zhu and Yi Yang. Compound Memory Networks for Few-Shot Video Classification. In *European Conference on Computer Vision*, 2018. 1, 2
- [9] Linchao Zhu and Yi Yang. Label Independent Memory for Semi-Supervised Few-shot Video Classification. *Transactions on Pattern Analysis and Machine Intelligence*, 14(8), 2020. 1, 2