—Supplemental Materials—

Recognizing Actions in Videos from Unseen Viewpoints

First Author
Institutionl
Institution] address

firstauthor@il.org

A. Architecture Details

Our base model used a standard (2+1)D ResNet-50 [1].
The camera transform is inserted into the network usually
after the 3rd block (in the main paper we compared all lo-
cations). Usually this network used 256 channels for the
representation and we used 3 cameras (i.e., 3 different 2D
projections). The total number of parameters of the 3 main
models is summarized in Table 1. Our layer adds only 280k
parameters (only about 1% of the parameters), but signif-
icantly improves performance on unseen views. It further
has significantly better runtime performance than spherical
CNNEs.

Table 1: Comparison of the number of parameters in the 3
main models. Adding the geometric projection layer only
adds 280k parameters, but greatly improves performance.

Model # params A

(2+1)D ResNet-50 21.3M 0

(2+1)D ResNet-50 + Ours 21.5M 280k

Spherical CNNs 21.2M -123k
B. Full Results

The full numerical results from plots in the paper are
provided here.

Second Author
Institution?2
First line of institution2 address

secondauthor@i2.org

Table 2: How many cameras to use.

Method MLB TSH
Seen Unseen | Seen Unseen
Baseline | 55.6 30.2 49.8 34.2
1 Cam 57.4 38.6 53.2 38.5
2 Cams | 58.1 41.8 53.9 39.1
4 Cams | 58.9 427 54.5 39.6
8 Cams | 58.7 427 54.5 394
Table 3: Where in network to add layer.
Method MLB TSH
Seen Unseen | Seen Unseen
Block 1 | 57.8 42.1 54.3 39.2
Block 2 | 58.3 42.4 54.4 39.2
Block 3 | 58.9 42.7 54.5 39.6
Block 4 | 57.4 41.7 53.8 38.9
Block 5 | 57.1 409 53.3 37.7

C. PyTorch Implementation

We provide the code here to implement the camera projection layer.

import
import
import

import

device

numpy as np
torch
torch.nn as nn

torch .nn. functional as F

= torch.device('cuda')

def rotation_tensor (theta, phi, psi, b=1):

Takes theta, phi, and psi and generates the
3x3 rotation matrix. Works for batched ops
As well, returning a Bx3x3 matrix.

one = torch.ones(b, 1, 1).to(device)
zero = torch.zeros(b, 1, 1).to(device)
rot_x = torch.cat ((

torch.cat((one, zero, zero), 1),
torch.cat((zero, theta.cos(), theta.sin()), 1),
torch.cat((zero, —theta.sin(), theta.cos()), 1),

), 2)

rot_y = torch.cat((
torch.cat((phi.cos(), zero, —phi.sin()), 1),
torch.cat ((zero, one, zero), 1),
torch.cat ((phi.sin(), zero, phi.cos()), 1),

), 2)

rot_z = torch.cat ((
torch.cat((psi.cos(), —psi.sin(), zero), 1),
torch.cat((psi.sin(), psi.cos(), zero), 1),
torch.cat((zero, zero, one), 1)

), 2)

return torch.bmm(rot_z , torch.bmm(rot_y, rot_x))

class

CameraProps (nn.Module):

Generates the extrinsic rotation and translation matrix

For the current camera. Takes some feature as input, then

Returns the rotation matrix (3x3) and translation (3x1)
def __init__(self, channels):

super (CameraProps, self).__init__ ()

self .cam = nn.Conv2d(channels, 128, 3)

self .cam2 = nn.Linear (128, 32)

self.rot = nn.Linear (32, 3)

self . trans = nn.Linear (32, 3)

def forward(self, x):
x = F.relu(self.cam(x))
averages X over space,time
then provides 3x3 rot and 3-dim trans
X = torch.mean(torch.mean(x, dim=2), dim=2)
X
b
r
r

F.relu(self.cam2(x))

x.size (0)

= self.rot(x)

eturn rotation_tensor(r[:,0], r[:,1], r[:,2], b), self.trans(x).view(b,3,1,1)

class CameraProjection (nn.Module):
Does the camera transforms and multi-view projection
Described in the paper.

def __init__(self, num_cameras):
super (CameraProjection, self). __init__ ()
self.cameras = nn.ParameterList ()

self .cam_rot = nn.ParameterList ()

for ¢ in range (num_cameras):
self.cameras.append(nn.Parameter (torch.rand (4)*2-1))
self .cam_rot.append(nn.Parameter (torch.rand (3)*np.pi))

def forward(self, x, rot, trans):
X is a list of [F, x,y,z] feature maps
or X is a [C, W, H] feature map
rot, trans are the extensic camera parameters
if isinstance(x, list):
if it is a list, process each feature map
resulting in a [C, W, H] as input
output = [self.forward(f, rot, trans) for f in x]
return torch.cat(output, dim=1) # channels is diml
x is now a [F, x,y,z] input where F is the feature
fts = x[:, :-3] # get feature value, a B x F x H x W tensor
pt = x[:, -3:] # get 3D point locations, a B x 3 x H x W tensor

rot is a 3x3 matrix

pw is 3x3 matrix applied along dim

pw = torch.einsum('bphw,bpgq—>bghw ', pt, rot)
pw += trans # add 3D translation

pw is now world coordinates at each feature map location
we do 2d projection next

views = []

for r,c in zip(self.cam_rot, self.cameras):
rot = rotation_tensor (r[0].view(1,1,1), r[1].view(1,1,1), r[2].view(1l,1,1))
cam_pt = torch.einsum('bphw,pq—->bghw ', pw, rot.squeeze (0))

proj = torch.stack ([(cam_pt[:, O]«c[0] + c[2]),

(cam_pt[:, 1]xc[1] + c[3])], dim=-1)
proj = torch.tanh(proj) # apply tanh to get values in [-1,1]
views .append (F. grid_sample (fts , proj))

return torch.cat(views, dim=1)

This layer can easily be inserted anywhere into a CNN. For example, assume the following code generates a ResNet. Then
the camera transform is used as:

class Net(nn.Module):

def __init__(self, ...):
self.layers = # ResNet Layers
self.cam_props = CameraProps(channels)
self .camera_proj = CameraProjection (num_cams)

def forward(self, video):
x = video
for i,layer in enumerate(self.layers):
x = layer (x)
if i = apply_camera_layer_loc:
rot, trans = self.cam_props(x)
x = self.camera_proj(x, rot, trans)
return Xx

References

[1] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer look at spatiotemporal convolutions
for action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 6450-6459,
2018. 1

