
–Supplemental Materials–
Recognizing Actions in Videos from Unseen Viewpoints

First Author
Institution1

Institution1 address
firstauthor@i1.org

Second Author
Institution2

First line of institution2 address
secondauthor@i2.org

A. Architecture Details
Our base model used a standard (2+1)D ResNet-50 [1].

The camera transform is inserted into the network usually
after the 3rd block (in the main paper we compared all lo-
cations). Usually this network used 256 channels for the
representation and we used 3 cameras (i.e., 3 different 2D
projections). The total number of parameters of the 3 main
models is summarized in Table 1. Our layer adds only 280k
parameters (only about 1% of the parameters), but signif-
icantly improves performance on unseen views. It further
has significantly better runtime performance than spherical
CNNs.

Table 1: Comparison of the number of parameters in the 3
main models. Adding the geometric projection layer only
adds 280k parameters, but greatly improves performance.

Model # params ∆

(2+1)D ResNet-50 21.3M 0
(2+1)D ResNet-50 + Ours 21.5M 280k
Spherical CNNs 21.2M -123k

B. Full Results
The full numerical results from plots in the paper are

provided here.

Table 2: How many cameras to use.

Method MLB TSH
Seen Unseen Seen Unseen

Baseline 55.6 30.2 49.8 34.2
1 Cam 57.4 38.6 53.2 38.5
2 Cams 58.1 41.8 53.9 39.1
4 Cams 58.9 42.7 54.5 39.6
8 Cams 58.7 42.7 54.5 39.4

Table 3: Where in network to add layer.

Method MLB TSH
Seen Unseen Seen Unseen

Block 1 57.8 42.1 54.3 39.2
Block 2 58.3 42.4 54.4 39.2
Block 3 58.9 42.7 54.5 39.6
Block 4 57.4 41.7 53.8 38.9
Block 5 57.1 40.9 53.3 37.7

1

C. PyTorch Implementation

We provide the code here to implement the camera projection layer.

i m p o r t numpy as np

i m p o r t t o r c h
i m p o r t t o r c h . nn as nn
i m p o r t t o r c h . nn . f u n c t i o n a l a s F

d e v i c e = t o r c h . d e v i c e (' cuda ')

d e f r o t a t i o n _ t e n s o r (t h e t a , phi , p s i , b = 1) :
" " "

Takes t h e t a , phi , and p s i and g e n e r a t e s t h e
3x3 r o t a t i o n m a t r i x . Works f o r b a t c h e d ops
As wel l , r e t u r n i n g a Bx3x3 m a t r i x .

" " "
one = t o r c h . ones (b , 1 , 1) . t o (d e v i c e)
z e r o = t o r c h . z e r o s (b , 1 , 1) . t o (d e v i c e)
r o t _ x = t o r c h . c a t ((

t o r c h . c a t ((one , zero , z e r o) , 1) ,
t o r c h . c a t ((ze ro , t h e t a . cos () , t h e t a . s i n ()) , 1) ,
t o r c h . c a t ((ze ro , − t h e t a . s i n () , t h e t a . cos ()) , 1) ,

) , 2)
r o t _ y = t o r c h . c a t ((

t o r c h . c a t ((p h i . cos () , ze ro , − p h i . s i n ()) , 1) ,
t o r c h . c a t ((ze ro , one , z e r o) , 1) ,
t o r c h . c a t ((p h i . s i n () , ze ro , p h i . cos ()) , 1) ,

) , 2)
r o t _ z = t o r c h . c a t ((

t o r c h . c a t ((p s i . cos () , − p s i . s i n () , z e r o) , 1) ,
t o r c h . c a t ((p s i . s i n () , p s i . cos () , z e r o) , 1) ,
t o r c h . c a t ((ze ro , ze ro , one) , 1)

) , 2)
r e t u r n t o r c h .bmm(r o t _ z , t o r c h .bmm(r o t _ y , r o t _ x))

c l a s s CameraProps (nn . Module) :
" " "

2

G e n e r a t e s t h e e x t r i n s i c r o t a t i o n and t r a n s l a t i o n m a t r i x
For t h e c u r r e n t camera . Takes some f e a t u r e as i n p u t , t h e n
R e t u r n s t h e r o t a t i o n m a t r i x (3 x3) and t r a n s l a t i o n (3 x1)

" " "
d e f _ _ i n i t _ _ (s e l f , c h a n n e l s) :

s u p e r (CameraProps , s e l f) . _ _ i n i t _ _ ()
s e l f . cam = nn . Conv2d (c h a n n e l s , 128 , 3)
s e l f . cam2 = nn . L i n e a r (1 2 8 , 32)
s e l f . r o t = nn . L i n e a r (3 2 , 3)
s e l f . t r a n s = nn . L i n e a r (3 2 , 3)

d e f f o r w a r d (s e l f , x) :
x = F . r e l u (s e l f . cam (x))
a v e r a g e s x ove r space , t ime
t h e n p r o v i d e s 3x3 r o t and 3−dim t r a n s
x = t o r c h . mean (t o r c h . mean (x , dim =2) , dim =2)
x = F . r e l u (s e l f . cam2 (x))
b = x . s i z e (0)
r = s e l f . r o t (x)
r e t u r n r o t a t i o n _ t e n s o r (r [: , 0] , r [: , 1] , r [: , 2] , b) , s e l f . t r a n s (x) . view (b , 3 , 1 , 1)

c l a s s C a m e r a P r o j e c t i o n (nn . Module) :
" " "

Does t h e camera t r a n s f o r m s and m u l t i −view p r o j e c t i o n
D e s c r i b e d i n t h e p a p e r .

" " "
d e f _ _ i n i t _ _ (s e l f , num_cameras) :

s u p e r (C a m e r a P r o j e c t i o n , s e l f) . _ _ i n i t _ _ ()
s e l f . cameras = nn . P a r a m e t e r L i s t ()
s e l f . cam_ro t = nn . P a r a m e t e r L i s t ()
f o r c i n r a n g e (num_cameras) :

s e l f . cameras . append (nn . P a r a m e t e r (t o r c h . r and (4) * 2 − 1))
s e l f . cam_ro t . append (nn . P a r a m e t e r (t o r c h . r and (3) * np . p i))

d e f f o r w a r d (s e l f , x , r o t , t r a n s) :
X i s a l i s t o f [F , x , y , z] f e a t u r e maps
or X i s a [C , W, H] f e a t u r e map
r o t , t r a n s a r e t h e e x t e n s i c camera p a r a m e t e r s
i f i s i n s t a n c e (x , l i s t) :

i f i t i s a l i s t , p r o c e s s each f e a t u r e map
r e s u l t i n g i n a [C , W, H] as i n p u t
o u t p u t = [s e l f . f o r w a r d (f , r o t , t r a n s) f o r f i n x]
r e t u r n t o r c h . c a t (o u t p u t , dim =1) # c h a n n e l s i s dim1

x i s now a [F , x , y , z] i n p u t where F i s t h e f e a t u r e
f t s = x [: , : −3] # g e t f e a t u r e va lue , a B x F x H x W t e n s o r
p t = x [: , −3 :] # g e t 3D p o i n t l o c a t i o n s , a B x 3 x H x W t e n s o r

r o t i s a 3x3 m a t r i x
pw i s 3x3 m a t r i x a p p l i e d a l o n g dim
pw = t o r c h . e insum (' bphw , bpq −>bqhw ' , p t , r o t)
pw += t r a n s # add 3D t r a n s l a t i o n

pw i s now wor ld c o o r d i n a t e s a t each f e a t u r e map l o c a t i o n
we do 2d p r o j e c t i o n n e x t

3

views = []
f o r r , c i n z i p (s e l f . cam_rot , s e l f . cameras) :

r o t = r o t a t i o n _ t e n s o r (r [0] . view (1 , 1 , 1) , r [1] . view (1 , 1 , 1) , r [2] . view (1 , 1 , 1))
cam_pt = t o r c h . e insum (' bphw , pq−>bqhw ' , pw , r o t . s q u e e z e (0))

p r o j = t o r c h . s t a c k ([(cam_pt [: , 0]* c [0] + c [2]) ,
(cam_pt [: , 1]* c [1] + c [3])] , dim = −1)

p r o j = t o r c h . t a n h (p r o j) # a p p l y t a n h t o g e t v a l u e s i n [−1 ,1]
v iews . append (F . g r i d _ s a m p l e (f t s , p r o j))

r e t u r n t o r c h . c a t (views , dim =1)

This layer can easily be inserted anywhere into a CNN. For example, assume the following code generates a ResNet. Then
the camera transform is used as:

c l a s s Net (nn . Module) :
d e f _ _ i n i t _ _ (s e l f , . . .) :

s e l f . l a y e r s = # ResNet La ye r s
s e l f . cam_props = CameraProps (c h a n n e l s)
s e l f . c a m e r a _ p r o j = C a m e r a P r o j e c t i o n (num_cams)

d e f f o r w a r d (s e l f , v i d e o) :
x = v i d e o
f o r i , l a y e r i n enumera t e (s e l f . l a y e r s) :

x = l a y e r (x)
i f i = a p p l y _ c a m e r a _ l a y e r _ l o c :

r o t , t r a n s = s e l f . cam_props (x)
x = s e l f . c a m e r a _ p r o j (x , r o t , t r a n s)

r e t u r n x

References
[1] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer look at spatiotemporal convolutions

for action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 6450–6459,
2018. 1

4

