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1. Introduction

This supplementary material accompanies the presenta-
tion of our method with additional information not included
in the main article [5].

First of all, we provide a detailed illustration of the struc-
ture of our network architecture (Sec. 2). This illustrations
provides details on all the individual network components
and is aimed to complement the general description pro-
vided in the paper.

Second, we provide a detailed gravity-alignment study
(Sec 3) that shows that available benchmark datasets are all
well-aligned with respect to the gravity vector and that our
method is robust to small gravity misalignments. These ad-
ditional results show that our method can be directly applied
in practice, even without recurring to pre-processing [1].

2. Detailed network architecture description

Our deep convolutional neural network (CNN) architec-
ture takes as input an equirectangular RGB image and out-
puts a registered depth image at the same resolution of the
input. The detailed structure of the network is illustrated
in Fig. 1. The network uses an encoder/decoder structure.
The encoder is presented in Fig. 1(a), while the decoder is
presented in Fig. 1(b).

The first 8 layers of the network consist of a standard
ResNet encoder (Fig. 1(a)). The results presented in the pa-
per are obtained with a ResNet50, but we verified that very
good performances can also be obtained and with ResNet18
and ResNet34, with a considerable increase in terms of
speed. The last 4 levels of the encoder are sliced, keep-
ing the horizontal dimension unchanged and compressing
the vertical one. This way, we accumulate a series of fea-
tures associated with each element of the horizontal dimen-
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sion (i.e., a slice). In order to merge the features, coming
from different resolution levels and associated to the same
slice, we interpolate the 4 maps so that they have the same
horizontal dimension (i.e., 512). We then reshape and con-
catenate the 4 maps so as to obtain a single-sequential bot-
tleneck (i.e., 1024 x 512).

The decoder (Fig. 1(b)) exploits a bi-directional LSTM
with 512 hidden layers, which outputs a time-step of size
2 x 512 for each of the 512 slices. So, that the final output of
this block is a feature map having the same size of the RNN
block input, i.e., 1024 x 512. Once reshaped to 1024 x
1 x 512, this flattened representation is upsampled to the
desired output size (i.e., 1 X 256 x 512) by following steps
symmetrical to those used for encoding reduction.

3. Detailed gravity-alignment study

Our approach starts from the assumption that gravity
plays an important role in the design and construction of in-
terior environments, and that world-space vertical and hori-
zontal features have different characteristics in most, if not
all, man-made environments. Based on this fact, we strive
to exploit gravity-aligned world-space features by perform-
ing a gravity-aligned processing of images. This assumes
that input equirectangular images are aligned to the gravity
vector. While this assumption could be managed by gravity-
aligning images before our pipeline, it is rational to assume
that, in most cases, captured images already meet these con-
straints. To verify this fact, we performed a study of gravity-
alignment of available datasets, and verified the robustness
of our method to small misalignment.
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Figure 1. Detailed illustration of the SliceNet architecture. This illustration complements the architectural view provided in the paper.

The network uses an encoder/decoder structure. The encoder is presented in Fig. 1(a), while the decoder is presented in Fig.

1(b). The

last 4 levels of the encoder are sliced, keeping the horizontal dimension unchanged and compressing the vertical one (Fig. 1(a)). From the
resulting sliced sequence (1024 x 1 x 512), we recover long and short term information through a LSTM module (Fig. 1(b)). The final
depth map is recovered by following steps symmetrical to those used for encoding reduction.

3.1. Gravity-alignment evaluation of benchmark
datasets

All the commonly available synthetic datasets [9, 8] are
perfectly aligned by design, and they thus perfectly meet the
constraint.

The study, thus, focuses on real-world capture. A com-
mon practice for capturing an indoor scene is to place the
camera on a tripod placed on a horizontal plane [1]. This
capture method is in fact adopted in all the datasets avail-
able for benchmarking and also adopted in our work and
the compared state-of-the-art methods [2, 10, 7].

For real-world datasets [0, 4] we exploited the alignment
pipeline of Zou et al. [ 1] to evaluate the misalignment with
the ground plane (see Fig. 2).

In our experiments we found that the average inclination,
with respect to the gravity vector, is 0.36 degrees for the
Stanford2D3D [6] dataset, while the average misalignment
of the Matterport3D [4] dataset is 0.61 degrees.
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Figure 2. Real-world datasets vertical misalignment. The av-
erage inclination with respect to the gravity vector of the Stan-
ford2D3D [6] dataset is about 0.36 degrees, while the average
misalignment of the Matterport3D [4] dataset is about 0.61 de-
grees. Outliers are mainly due to inaccurate line detection and
classification of the alignment tool [3].

Indeed these values are really minimal, also considering
that a significant part of the angular error is due to low ac-



curacy detecting lines and estimating dominant direction by
the automatic alignment tool [3]. We can, therefore con-
clude that available datasets all have a sub-degree accuracy
with respect to gravity alignment.

3.2. Robustness to gravity misalignment

Even if our method assumes to work with gravity-
aligned scenes, we do not necessary require a perfect align-
ment. In addition to the results and comparison already
presented in the paper, we show, for completeness, the re-
sults obtained by introducing various degrees of error in the
alignment (0°, £2°, +5°). We also performed a test, com-
bining both training and testing of Structured3D [8] with
and without alignment to the ground plane.

Results in Tab. 1 demonstrate the consistency of our
model and effectiveness of our assumption, where the best
performances are obtained the more the images are aligned
with the ground plane, while the results do not improve even
if a specific training is done on distorted data in order to find
a better fit on the inclined images. Moreover, the method
appears fairly robust to small alignment errors (< 4+2°), and
degrades as soon as input images are severely misaligned.

Train | Test | \ipp | MAE | RMSE | RMSE 51
incl. incl. log
0° 0° | 00147 | 0.1180 | 0.0549 | 0.1012 | 0.9085

0° +2° 0.0217 | 0.1393 | 0.0658 0.1368 | 0.8776

0° +5° 0.0263 | 0.1601 | 0.0714 0.1430 | 0.8527

+2° 0° 0.0238 | 0.1516 | 0.0632 0.1288 | 0.8672

+2° +2° 0.0250 | 0.1589 | 0.0716 0.1434 | 0.8464

+2° £5° 0.0281 0.1716 | 0.0743 0.1501 0.8310

+5° 0° 0.0231 0.1530 | 0.0648 0.1245 0.8638

+5° +2° 0.0250 | 0.1613 | 0.0721 0.1388 | 0.8438

+5° +5° | 0.02758 | 0.1697 | 0.0735 | 0.01422 | 0.8362

Table 1. Performance when training with misaligned images.
We show, for completeness, the results obtained by combining
both training and testing with and without alignment to the ground
plane on the Structured3D dataset [8].

In other words, the effectiveness of the network is not
given by the specific fitting of the training data with the ex-
pected result but by the consistency of the scene with our
specific network architecture.
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